

871 Equestrian Court, Unit 1, Oakville ON L6L 6L7 Tel: 647-795-8153 | www.pecg.ca

Phase Two Environmental Site Assessment (ESA)

725 Westney Road South, Ajax

Project # 1904320

Prepared For

Firearms Outlets Canada

June 17, 2024

871 Equestrian Court, Unit 1, Oakville ON L6L 6L7 Tel: 647-795-8153 | www.pecg.ca

June 17, 2024

Fred Pellegrino
Firearms Outlets Canada
c/o Shilpi Saraf-Uiterlinden
The Biglieri Group
2472 Kingston Road, Toronto, M1N 1V3

Dear Fred Pellegrino:

Re: Phase Two Environmental Site Assessment, 725 Westney Road South, Ajax, ON

Project #: 1904320

We are pleased to present our Phase Two Environmental Site Assessment (ESA) report for the abovenoted property. The scope of this Phase Two ESA conforms to the requirements outlined in Ontario Regulation 153/04 and 407/19. The purpose of this Phase Two ESA was to support a Site Plan Approval and Zoning By-Law Amendment application with the Town of Ajax, and may be required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP).

The report provides information from Palmer's site reconnaissance, drilling activities, soil and ground water sampling, review of laboratory certificate of analysis, and our conclusions for your consideration.

We trust that this report will be satisfactory for your current needs. If you have any questions or require further information, please contact our office at your convenience.

Yours truly,

Palmer PART OF SER

Sarah Vlantis, B.Sc., P.Geo (limited), QPESA.

Principal, Environment & Construction Team Lead

Executive Summary

Palmer is pleased to provide this Phase Two Environmental Site Assessment (ESA) report to Firearms Outlets Canada. The Phase Two ESA was prepared for the parcel of land located at 725 Westney Road South, Ajax (hereafter collectively referred to as the "Phase Two Property").

It is Palmer's understanding that the purpose of this Phase Two ESA is to support a Site Plan Approval and Zoning By-Law Amendment application with the Town of Ajax and may be required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for commercial redevelopment with a two-storey addition after the demolition of the northern half of the current building. This Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The Phase Two Property is a 0.66-hectare, square shaped, parcel of land located on the north side of Westney Road South, west of the intersection with Finley Avenue in Ajax, Ontario. Building structures on the Site include a 1,436 m², single storey commercial/light industrial building which comprises three units. Unit 1 is vacant and was most recently leased by a kitchen renovation company. Unit 2 is leased by Firearms Outlets Canada, a gun wholesaler. Unit 3 is leased by Wraptors Inc., a vehicle detailing company. The remaining parts of the Site comprise asphalt-paved, grass, and landscaped areas.

Based on the findings of our recently completed Phase One ESA, the Phase One Study Area ("surrounding area") covers land uses within a 250 metre (m) radius of the Phase Two Property. The Phase One Study Area is developed with residential, industrial and commercial land uses including automotive repair by Sortech Automotive Corp & Seal Auto Glass & Trim since 2012, chemical manufacturing by Septo-Clean Ltd since 2012, metal fabrication by Ko-Tek Manufacturing & Bayview Metals since 2020, Craftsmen Printers in 1991, and plastics manufacturing by Roven Tool & Mould between 1997 and 2004 at 700 Finley Avenue, metal fabrication by Die-Max Tool & Die Ltd since at least 2007 at 729 Finley Avenue, vehicle maintenance and storage by Rock Brune Bros since at least 1981 at 725 Finley Avenue, automotive repair and metal fabrication since at least 1989 at 717 Finley Avenue, automotive repair since at least 2003 at 711 Finley Avenue, a metal and scrap collection facility Apick Scrap Metal Inc. since at least 2005 at 695 Finley Avenue, a machine shop (E.J. Industries Ltd) and fuel storage operations at 765 Westney Road South.

There are no water bodies or areas of natural significance on the Phase Two Property. Duffin's Creek is located approximately 800 m northwest of the Phase Two Property. No Areas of Natural Significance are within the Phase One Study Area.

Historically, the Phase Two Property was utilized as a temporary construction office with a mobile trailer depicted at the northeast portion in the early 1980s. The Site was first developed in the early 1990s with the current building. Tenants of the building have included a home renovations business (2022-2023), All-Canadian Tax Service (2021), Bell Mobility (2000), Children's Wish Foundation (2012-2017), Eastway Management Inc (2012-2021), Excell Communications (2000-2017), Gilson Construction Ltd. (1991), Heart and Stroke Foundation of Ontario (2000), Mak Boat Sales (2012-2017), National Bank of Canada Ajax (1991), Novanet Communications (1995-2021), Pickering Audio Visual (2000-2021), Positive Changes Hypnosis (2012), Stationers Marketing of Canada Inc. (1995), Road Lanes Publishing (2021), T L P General

Contractors Ltd (1991), Trenway Communications Services Ltd (1995), and UDI Office Centre Canada Ltd (2000).

Based on the findings of the historical records review, Site reconnaissance, and personal interviews, it was concluded that twenty-five (25) potentially contaminating activities (PCAs) were identified either on the Phase Two Property or within the Phase One Study Area. These PCAs were deemed to be contributing to eight (8) areas of potential environmental concern (APECs) on the Phase Two Property. The identified PCAs and APECs are as follows:

Table A. Summary of APECs and PCAs

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #1: Existing Waste Generator & Car Wash Chemicals Manufacturing	Western portion of Phase One Property	#33. Metal Treatment, Coating, Plating and Finishing #50. Soap and Detergent Manufacturing, Processing and Bulk Storage #40. Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage, and Large Scale Applications	Off-Site – Besnovo Technologies generating petroleum wastes and performing laser de-coating since at least 2018; Coopers Agropharm Inc. is registered as pesticides vendor and is a manufacturer of veterinary supplies and drugs between 1991 and 1995; Mondo Products Co Ltd operating as a car wash chemicals manufacturer and generating petroleum and hazardous wastes since at least 1999 to at least 2022 adjacent to the Phase One Property at 695 Westney Road South.	Metals, Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine (OC) Pesticides	Soil & Ground Water
APEC #2: Existing Automotive Repair, Metal Fabrication, & Plastic and Chemical Manufacturing, Machine Shop Operations, and Former Printing, Machine Shop Operations &	Northern portion of Phase One Property	#8. Chemical Manufacturing, Processing and Bulk Storage #10. Commercial Autobody shops #31. Ink Manufacturing, Processing and Bulk Storage	Off-Site – Seal Auto Glass & Trim and Sortech Automotive Corp operating as automotive repair and auto body shops since at least 2012, Rapid Packaging Systems Ltd operating as a plastics manufacturer since at least 2017, Septo- Clean Ltd operating as chemical products manufacturer since at	Metals, As, Sb, Se, PHCs, Benzene, Toluene, Ethylbenzene, Xylene (BTEX), VOCs	Soil & Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
Plastic Manufacturing, Former Storage Tank		#34. Metal Fabrication #43. Plastics (including Fiberglass) Manufacturing and Processing #52. Storage, Maintenance, Fueling, And Repair Of Equipment, Vehicles, And Material Used To Maintain Transportation Systems #28. Gasoline and Associated Products Storage in Fixed Tanks	least 2012, Ko-Tek Manufacturing operating as Metal fabrication since 2012, Bayview Metals operating as a machine shop in 2020, Craftsmen Printers operating in 1991, Emifri Shield Plating operating between 1986 and 1998, Holscoe Precision Tooling operating as a machine shop in 2004, Roven Tool and Mould operating as plastics manufacturer between 1997 and 2004 adjacent to the north property boundary of the Phase One Property at 700 Finley Avenue. In addition, one record for an expired 1,750-L storage tank with unknown content is listed for Wooden Paddle Candy Co in 1993.		
APEC #3: Existing Metal Coating and Treatment	Eastern portion of Phase One Property	#34: Metal Fabrication #33: Metal Treatment, Coating, Plating and Finishing	Off-Site – Die-Max Tool & Die Ltd operating since at least 2007 and Progress Machine Co operating as a woodworking machinery manufacturing facility between 1962 and 2000 at 729 Finley Avenue.	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #4: Existing Automotive Repair Operations	Northeastern portion of Phase One Property	#52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-Site – Rockbrune Bros performing vehicle and equipment maintenance and repair since at least 1981 at 725 Finley Avenue	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #5: Existing Automotive Repair & Painting Operations and Former Machine Shop Operations	Northeastern portion of Phase One Property	#10: Commercial Autobody Shops #33: Metal Treatment, Coating, Plating and Finishing #39. Paints Manufacturing, Processing and Bulk Storage	Off-Site – Autobahn East operating since at least 2013, Ny-Mould Industries operating as a machine shop in 1989, and Red Tower operating since at least 2017 at 717 Finley Avenue	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #6: Automotive Repair Operations	Northeastern portion of Phase One Property	#10: Commercial Autobody Shops #52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-Site – Padhiana Auto Ltd. operating as an autobody shop in 2002 and 2003, Kelly & Sons Auto Repair operating since at least 2015 and Precision Motorsport operating since at least 2021 at 711 Finley Avenue.	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #7: Existing Scrap Metal Facility, Former Forklift Repair Operations, and Former Woodworking Shop	Northern portion of Phase One Property	#2. Adhesives and Resins Manufacturing, Processing and Bulk Storage #39. Paints Manufacturing, Processing and Bulk Storage #52. Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems #58. Waste Disposal and Waste Management, including thermal treatment, landfilling and	Off-Site – Apick Scrap Metal Inc operating as a Metal and scrap collection facility since at least 2005, Lifestyle Cabinets, Bantam Trades and Services operating in 1984, and D&K Forklift Services Ltd. generating wastes from 1992 to 2001 at 695 Finley Avenue.	PHCs, BTEX, VOCs, Metals, As, Sb, Se	Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
		transfer of waste, other than use of biosoils as soil conditioners			
APEC#8: Former Petroleum Products Suppliers With Storage Tanks, Former and Current Machine Shops and Metal Products Manufacturing	Southeastern Portion of Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks #33. Metal Treatment, Coating, Plating and Finishing #34. Metal Fabrication	Off-Site – First Choice Petroleum and Olco Petroleum Group listed as having 13 records for gasoline/diesel storage tanks with unknown volume and installation date; Comtrade Petroleum Inc. listed as generator of waste oils and lubricants since at least 1990 to at least 1998; MP Gas Bar operating as a petroleum products supplier in 1991; Bel-Merit operating as a metal machinery fabrication facility in 1996. Pro-Bel operating as metal products manufacturer since at least 1991; E.J. Industries Ltd. Is listed as operating as a machine shop and fabricated metal products since at least 2012 at 765 Westney Road South.	Metals, As, Sb, Se, PHCs, BTEX, VOCs, PAHs	Ground Water

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the aforementioned PCAs and APECs.

The Phase Two ESA entailed the drilling of a total of seven (7) sampled boreholes (BH23-1 to BH23-7) to depths ranging between 8.40 to 9.90 metres below ground surface (mbgs) at strategically selected and accessible locations on the Phase Two Property. Ground water monitoring wells were also installed in all seven (7) boreholes.

The observed soil stratigraphy generally comprised surficial asphalt pavement or grass overlying sand and/or gravel, topsoil, clayey silt, silty clay or sandy silt fill, which was underlain by a stratum of sandy silt till. The soil across the property is considered to be medium-fine textured for the purpose of this assessment.

Fieldwork for this investigation began on November 28, 2023 by soil sampling from a total of five (5) exterior boreholes drilled to depths of 8.40 to 9.90 m below existing grade with the installation of seven (7) monitoring wells. The stabilized ground water levels were measured at depths of 5.94 to 8.62 m below existing grade. No free-product was measured in any of the monitoring wells.

Based on the site topography and ground water level measurements, the ground water flow is interpreted to flow across the Site in a southwesterly direction. The results of the ground water monitoring also indicate that the primary near surface water table resides within the native sandy silt (till) layer.

Seventeen (17) soil samples (representative of fill and native soils) and ten (10) ground water samples were collected and submitted for laboratory analyses.

In comparison with the new (2011) Ontario Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the EPA criteria, the results of laboratory analyses did not reveal any soil or ground water exceedances in comparison to Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils.

As the soil and ground water analytical results do not exceed the Table 3 SCS, no remedial activities are required.

The statements made in this Executive Summary are subject to the same limitations as contained in the report and should be read in conjunction with the entire report.

Table of Contents

Lette Exec		nmary	i				
1.	Intro	oduction	1				
	1.1	Phase Two Property Description	1				
	1.2	Property Ownership					
	1.3	Current and Proposed Future Uses					
	1.4	Applicable Site Condition Standards					
2.	Bacl	Background Information					
	2.1	Physical Setting	5				
	2.2	Past Investigations					
3.	Sco	oe of the Investigation	7				
	3.1	Overview of Site Investigation	7				
	3.2	Media Investigated					
	3.3	Phase One Conceptual Site Model					
	3.4	Deviations from Sampling and Analysis Plan					
	3.5	Impediments					
4.	Investigation Method						
	4.1	General	17				
	4.2	Drilling and Excavating	17				
	4.3	Soil: Sampling	18				
	4.4	Soil: Field Screening Methods	19				
	4.5	Ground Water: Monitoring Well Installations	19				
	4.6	Ground Water: Field Measurement of Ground water Quality Parameters	20				
	4.7	Ground Water: Sampling					
	4.8	Sediment: Sampling					
	4.9	Analytical Testing					
	4.10	Residue Management Procedures					
	4.11	Elevation Surveying					
	4.12	Quality Assurance and Quality Control Measures	22				
5 .	Revi	ew and Evaluation	24				
	5.1	Geology					
	5.2	Ground Water: Elevations and Flow Direction					
	5.3	Ground water Hydraulic Gradients					
	5.4	Fine-Medium Soil Texture					
	5.5	Soil: Field Screening					
	5.6	Soil Quality	26				

	5.7			Quality	
	5.8			ty	
	5.9	Qualit	ty Assuran	ce and Quality Control Results	27
	5.10	Phase	e Two Cor	nceptual Site Model	28
6.	Con	clusio	ns		38
	6.1	Limita	ations		38
	6.2	Signa	tures and	Certification	39
7 .	Refe	rence	s		41
8.	Tabl	es and	d Figure	s	42
	8.1	Table	s		42
		8.1.1	Monitorin	g Well Installation	42
		8.1.2	Water Le	vels	42
		8.1.3	LNAPLs	and DNAPLs	42
		8.1.4	Soil Data		43
			8.1.4.1	PHCs with BTEX	43
			8.1.4.2	VOCs	44
			8.1.4.3	Metals	45
			8.1.4.4	PAHs	46
			8.1.4.5	OC Pesticides	47
		8.1.5	Ground V	Vater Data	48
			8.1.5.1	PHCs with BTEX	48
			8.1.5.2	VOCs	49
			8.1.5.3	Metals	50
			8.1.5.4	PAHs	51
			8.1.5.5	OC Pesticides	52
		8.1.6	Sedimen	t Data	53
		8.1.7	Soil and	Ground Water Maximum Concentration Data	
			8.1.7.1	Soil Maximum Concentration Data	54
			8.1.7.2	Ground Water Maximum Concentration Data	58
	8.2	Figur	es		59
		8.2.1	Areas of I	Natural Significance and Water Bodies	59
		8.2.2	Property I	Before Actions Taken to Determine the Concentration of C	ontaminant60
		8.2.3		ed Contours of Ground Water Elevations	
		8.2.4		ction A-A'	
		8.2.5		ction B-B'	
		0.2.0	01035 36	GUOII D-D	12

List of Drawings

Drawing 1:	Site Location Map
Drawing 2:	Borehole Location Plan
Drawing 3:	On-Site & Off-Site Areas of Potential Environmental Concern

Drawing 4: Soil Sample Locations

Drawing 5: Ground Water Sample Locations
Drawing 6: Conceptual Model for Human & Ecological Receptors

List of Additional Tables

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells	7
Table 2. Soil Stratigraphy Summary	18
Table 3. Monitoring Well Development Details	
Table 4. Ground Water Quality Parameters	
Table 5. Summary of Geology	24
Table 6. Summary of Ground Water Conditions	24

Photographs

List of Appendices

A. GENERAL

Appendix A1: Sampling and Analysis Plan

Appendix A2: Finalized Field Logs

Appendix A3: Certificates of Analysis or Analytical Reports from Laboratories

Appendix A4: Survey of Phase Two Property

1. Introduction

Palmer was retained by Firearms Outlets Canada (the 'Client') to conduct a Phase Two Environmental Site Assessment (ESA) for the parcel of land located at 725 Westney Road South, Ajax (hereinafter referred to as the 'Phase Two Property'), as shown in **Drawing 1**.

It is Palmer's understanding that the purpose of this Phase Two ESA is to support a Site Plan Approval and Zoning By-Law Amendment application with the Town of Ajax and is required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for commercial redevelopment with a two-storey addition after the demolition of the northern half of the current building. The Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The assessment consisted of a program of drilling, sampling, laboratory analysis and evaluation of results which characterized the subsurface conditions beneath the Site to establish any environmental contamination affecting the Site.

Conditions noted in this report are general in nature. This report presents the results of the investigation and the conclusions we have drawn regarding the possible impact of the conditions observed.

1.1 Phase Two Property Description

The Phase Two Property is a 0.66-hectare, square shaped, parcel of land located on the north side of Westney Road South, west of the intersection with Finley Avenue in Ajax, Ontario. Building structures on the Site include a 1,436 m², single storey commercial/light industrial building which comprises three units. Unit 1 is vacant and was most recently leased by a kitchen renovation company. Unit 2 is leased by Firearms Outlets Canada, a gun wholesaler. Unit 3 is leased by Wraptors Inc., a vehicle detailing company. The remaining parts of the Site comprise asphalt-paved, grass, and landscaped areas.

The subject property is located north of Westney Road South, south of Chisholm Court, and west of Finley Avenue, as shown in **Drawing 1** and the photograph appendix. The municipal address is 725 Westney Road South, Ajax with Property Identification Number (PIN) 26465-0010 (LT).

The legal description of the Phase Two Property is Parcel 1-8, Section 40M1308; Part Block 1 Plan 40M1308, Part 2 Plan 40R9180; S/T Lot 266613, in the Town of Ajax, Province of Ontario.

The center of the Phase Two Property is located in UTM Zone 17, with approximate coordinates of Easting 658702 m and Northing 4854809 m.

1.2 Property Ownership

At the time of the investigation, the Phase Two Property was owned by Pelle Real Estate Holdings Inc. and was occupied by two (2) different tenants including: Firearms Outlets Canada and Wraptors Inc. One of the units was vacant at the time of Palmer's site reconnaissance and was most recently used as an office space for a home renovations business. The authorization for Palmer to proceed with the Phase Two ESA was given by Fred Pellegrino (President) of Firearms Outlets Canada. The contact information for the proponent is provided below:

<u>Company Name</u>: Firearms Outlets Canada <u>Company Address</u>: 725 Westney Road South, Ajax

Contact Name: Fred Pellegrino

Contact email: soccerfuel74@gmail.com

1.3 Current and Proposed Future Uses

Historically, the Phase Two Property was utilized as a temporary construction office with a mobile trailer depicted at the northeast portion in the early 1980s. The Site was first developed in the early 1990s with the current building. Tenants of the building have included a home renovations business (2022-2023), All-Canadian Tax Service (2021), Bell Mobility (2000), Children's Wish Foundation (2012-2017), Eastway Management Inc (2012-2021), Excell Communications (2000-2017), Gilson Construction Ltd. (1991), Heart and Stroke Foundation of Ontario (2000), Mak Boat Sales (2012-2017), National Bank of Canada Ajax (1991), Novanet Communications (1995-2021), Pickering Audio Visual (2000-2021), Positive Changes Hypnosis (2012), Stationers Marketing of Canada Inc. (1995), Road Lanes Publishing (2021), T L P General Contractors Ltd (1991), Trenway Communications Services Ltd (1995), and UDI Office Centre Canada Ltd (2000).

The current and proposed land uses are as follows:

Current or Proposed	Description of Property Use
Current	Commercial – Multi-unit single storey commercial/light industrial building
Proposed	Commercial – Multi-unit two storey commercial/light industrial building

1.4 Applicable Site Condition Standards

Ontario Regulation 153/04 - Records of Site Condition, Part XV.1 of the Environmental Protection Act as amended - "O.Reg. 153/04, as amended" - establishes the legislative and regulatory requirements for contaminated sites in Ontario. The Ministry of Environment, Conservation and Parks (MECP) document "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011 sets out the prescribed contaminants and applicable Site Condition Standards (SCS) for those contaminants for the purposes of O. Reg. 153/04, as amended. The MECP SCS are set out in Tables 1 to 9 criteria applicable for various site conditions.

The selection of the appropriate MECP SCS for a Phase Two ESA is dependent upon several site-specific conditions, such as the existing/proposed property use, the existing/potential ground water use, the depth of clean-up, soil texture, depth to bedrock and proximity to the nearest body of water.

The MECP SCS applicable to the Site have been evaluated on the basis of the following rationale:

Site Sensitivity:

- The site does not include, nor is there evidence to suggest it could have an adverse effect on a sensitive environment.
- The borehole drilling program revealed that the bedrock was not encountered by the maximum borehole depth of 9.90 metres (m) below existing grade across the Site. Based on studies conducted in the area, the depth of bedrock is expected to be approximately 100 m below existing grade;
- The glacially-derived native sandy silt materials are of moderate permeability to depths up to at least 9.90 m below ground surface; and
- The subsurface soil pH values are between 7.93 and 7.97. Two (2) soil samples (and one duplicate soil sample) were collected on November 28, 2023 at two of seven boreholes (BH23-3 & BH23-5) between 0.76 and 6.61 m below existing grade, to determine the soil pH for the Phase Two Property.

Land Use:

• The subject site is currently developed with a building to support commercial land uses. Proposed commercial redevelopment is anticipated.

Ground Water Use:

 The site is and will continue to be serviced by a municipal drinking water supply derived from Lake Ontario.

Depth and Soil Texture:

- For the purpose of the report, the assessment criteria corresponding to the full depth option will be used for comparison to the laboratory analytical results.
- One soil sample was collected on November 28, 2023 at the location of BH23-1 between 6.10 and 6.86 m below existing grade, to determine the soil grain size for the Phase Two Property.
- Based upon field observations, and soil grain size analyses conducted by ALS Environmental, the site stratigraphy generally comprises 32 % silt and 22% clay Therefore, for the purpose of this report, the assessment criteria corresponding to medium-fine textured soils were selected for comparison in laboratory analytical results.

• The selected soil texture is applicable to at least one-third of the Site being assessed. Therefore, the medium-fine textured soil SCS can be used, as per Ontario Regulation 153/04, s.42 (1).

Based on the above information, the applicable <u>EPA</u> site assessment criteria selected for use at this Site is the Full Depth Generic SCS in a Non-Potable Ground Water Condition (<u>Table 3</u>) criteria for industrial/commercial/community land uses with medium fine-textured soils.

2. Background Information

The environmental investigation conducted at the Site and the details of our findings are outlined in **Section 3**. The Phase Two ESA was conducted at the Site to address the APECs identified by the Palmer December 20, 2023 Phase One ESA for the Site.

2.1 Physical Setting

The Phase Two Property is located at a topographic elevation of approximately 92 m above mean sea level (masl). Topography at and in the general vicinity of the Site is relatively flat with a drop in elevation to the southwest towards Duffin's Creek and Lake Ontario, as shown in **Figure 8.2.1**.

The Phase Two Property is located within the broad physiographic region known as the Iroquois Plain (Chapman and Putnam, 1984). This region is a slightly sloping plain that is covered with stratified sands of carrying depths in some areas and soil formed directly on the wave-eroded surface of red shale, in others. This region borders Lake Ontario and extends around the western part of Lake Ontario from the Niagara River to the Trent River.

Local surficial geologic mapping (The Ontario Geological Survey, 2003) of the Ajax area indicates that pleistocene stone-poor, carbonate-derived silty to sandy till, underlie the Phase Two Property.

Bedrock geologic mapping of Ontario (The Ontario Geological Survey, 1990) indicates that the glacially derived overburden soil at the Phase Two Property is underlain by Upper Ordovician Age shale, limestone, dolostone, and siltstone of the Blue Mountain Formation.

There are no water bodies on the Phase Two Property. Duffin's Creek is located approximately 800 m northwest of the Phase Two Property, which flows southward to Lake Ontario. Lake Ontario is located approximately 1.38 km south of the Phase Two Property. The regional ground water flow is surmised to be also directed southwestward due to the influence of Duffins Creek and Lake Ontario. The local hydrogeology is controlled by this waterbody, the underlying geology, and the topography and is surmised to be directed southwestward. The static ground water level beneath the Phase Two Property was measured to be between 5.94 and 8.62 m below existing grade.

There are no areas of natural significance on the Phase Two Property or within the Phase One Study Area.

There are no well-head protection areas or other designation identified by the Municipality in its official plan for the protection of ground water on the Phase Two Property or within the Phase One Study Area.

The Phase Two Property is serviced by a municipal drinking water system with potable water derived from Lake Ontario. However, there are two (2) well records within a 250 m search radius. These records relate to monitoring observation wells in the Phase One Study Area.

2.2 Past Investigations

No reports report relating to the environmental conditions at the Phase Two Property were provided by the Client. Palmer conducted a Phase One ESA Report for the Client in December 2023. A summary of the description of relevant report data, analysis and findings relevant to the Phase Two ESA, including the presence of a contaminant on, in or under the Phase Two Property or the existence of an area of potential environmental concern, is as follows:

Report Title: Phase One Environmental Site Assessment 725 Westney Road South, Ajax, Ontario

<u>Date:</u> December 20, 2023 Prepared by: Palmer

Prepared for: Firearms Outlets Canada

Based on the findings of the historical records review, site reconnaissance, and interviews; PCAs and APECs were identified in association with the Phase One Property and/or Phase One Study Area. Refer to Table A in the Executive Summary.

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the PCAs and APECs identified in the Phase One ESA.

3. Scope of the Investigation

The Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA). It is Palmer's understanding that the purpose of this Phase Two ESA was to support a Site Plan Approval and Zoning By-Law Amendment application with the Town of Ajax, and is required to support filing of a RSC with MECP. The Phase Two Property is contemplated for commercial redevelopment with a two-storey addition after the demolition of the northern half of the current building.

3.1 Overview of Site Investigation

To address the APECs identified in the Palmer 2023 Phase One ESA, Palmer conducted a Phase Two ESA consisting of drilling boreholes, installing monitoring wells, and sampling and chemical testing of soil and Ground water samples during the Phase Two ESA investigation.

Seven (7) boreholes (BH23-1, BH23-2, BH23-3, BH23-4, BH23-5, BH23-6, BH23-7) were advanced across the Site. All seven (7) of the boreholes were completed as monitoring wells.

The rationale for the selection of borehole/monitoring well locations is shown on **Table 1** below:

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells

Areas of Potential Environmental Concern	Location on Site	Sample Location / Sample ID
APEC #1: Existing Waste Generator & Car Wash Chemicals Manufacturing	Western portion of Phase One Property	BH/MW23-2 to BH/MW23-4
APEC #2: Existing Automotive Repair, Metal Fabrication, & Plastic and Chemical Manufacturing, Machine Shop Operations, and Former Printing, Metal Plating, Machine Shop Operations & Plastic Manufacturing, Former Storage Tank	Northern portion of Phase One Property	BH/MW23-1, BH/MW23- 2 and BH/MW23-5
APEC #3: Existing Metal Coating and Treatment	Eastern portion of Phase One Property	BH/MW23-5 to MW23- 6/7
APEC #4: Existing Automotive Repair Operations	Northeastern portion of Phase One Property	BH/MW23-1, BH/MW23- 5 and MW23-6
APEC #5: Existing Automotive Repair & Painting Operations and Former Machine Shop Operations	Northeastern portion of Phase One Property	BH/MW23-1, BH/MW23- 5 and MW23-6
APEC #6: Automotive Repair Operations	Northeastern portion of Phase One Property	BH/MW23-1, BH/MW23- 5 and MW23-6
APEC #7: Existing Scrap Metal Facility, Former Forklift Repair Operations, and Former Woodworking Shop	Northern portion of Phase One Property	BH/MW23-1, BH/MW23- 5 and MW23-6

Areas of Potential Environmental Concern	Location on Site	Sample Location / Sample ID
APEC#8: Former Petroleum Products Suppliers With Storage Tanks, Former and Current Machine Shops and Metal Products Manufacturing	Southeastern Portion of Phase One Property	BH/MW23-5 to MW23- 6/7

The scope of work for this Phase Two ESA included the following tasks:

- Planned a site investigation through the preparation of a Sampling and Analysis Plan (refer to **Appendix A1**).
- Acquired utility locates: Prior to the advancement of the boreholes, arranging for the location of
 underground and overhead utilities including electrical (hydro), natural gas, water supply, sanitary
 and storm sewer, telephone, cable and communication. Underground utilities were marked by local
 utility locates company representatives, and a private locator, Premier Locates, was retained to
 clear the borehole locations prior to drilling of the boreholes.
- Mobilized, drilled, and logged seven (7) sampled boreholes to depths of 8.40 to 9.90 metres below ground surface (mbgs).
- Installed 50-mm diameter perforated polyvinyl chloride (PVC) ground water monitoring wells in seven (7) of the boreholes. All ground water monitoring wells were installed with 3.05 m of slotted PVC intake screen.
- Screened soil sample head-space for soil vapours using a portable photo ionization detector (PID) *Thermo 580B.*
- Measured the static ground water levels in the seven (7) monitoring wells.
- Completed an elevation survey of the seven (7) monitoring wells to obtain a ground water elevation measurement to confirm ground water flow direction at the Site at the time of the field investigation.
- Purged three (3) well casing volumes from each monitoring well or until each well was dry and collected ground water samples from six (6) of the seven (7) monitoring wells due to monitoring well BH/MW23-7 being dry.
- Submitted soil and ground water samples under Chain of Custody protocol to an accredited laboratory to carry out chemical analysis for contaminants of potential concern in accordance with O.Reg. 153/04 "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*" published by the MECP and dated March 9, 2004, as amended by O. Reg. 511/09, s. 22 ("Analytical Protocol").
- Reviewed and interpreted laboratory results of chemical analysis data and observations made during the site investigation.
- Completed an evaluation of the information from the above and preparing a Phase Two Conceptual Site Model (CSM) to identify locations and concentrations of contaminants (if any) above the applicable SCS at the Site.
- Prepared a Phase Two ESA report of the investigation findings, conclusions, and recommendations.

3.2 Media Investigated

The Phase Two ESA included the investigation of soil and ground water at the Site.

Soil and ground water samples were selected for chemical analysis to determine whether any contaminants of potential concern (COPCs) were present in the soil and ground water in the locations of the APECs, outlined in the Palmer December 20, 2023 Phase One ESA.

A total of seventeen (17) soil samples, including five (5) duplicate soil samples, and ten (10) ground water samples, including three (3) duplicate ground water samples and one (1) trip blank sample, were submitted to ALS Environmental, for analysis of various COPCs to investigate the soil and ground water quality related to the aforementioned APECs. These COPC included PHCs, PAHs, VOCs, BTEX, Metals parameters (As, Sb, Se), and Organochlorine (OC) Pesticides. One additional composite soil sample was submitted for Toxicity Characteristic Leaching Procedure Analysis of PHCs, VOCs, PAHs and ICPMS Metals. Borehole and monitoring well locations are presented in **Drawing 2**.

As there is no surface water body on the Site, no sediment sampling is required.

3.3 Phase One Conceptual Site Model

Site Description

The Phase One Property is a 0.66-hectare, square shaped, parcel of land located on the north side of Westney Road South, west of the intersection with Finley Avenue in Ajax, Ontario. Building structures on the Site include a 1,436 m², single storey commercial/light industrial building which comprises three units. Unit 1 is vacant and was most recently leased by a kitchen renovation company. Unit 2 is leased by Firearms Outlets Canada, a gun wholesaler. Unit 3 is leased by Wraptors Inc., a vehicle detailing company.

Historically, the Phase One Property was utilized as a temporary construction office with a mobile trailer depicted at the northeast portion in the early 1980s. The Site was first developed in the early 1990s with the current building. Tenants of the building have included a home renovations business (2022-2023), All-Canadian Tax Service (2021), Bell Mobility (2000), Children's Wish Foundation (2012-2017), Eastway Management Inc (2012-2021), Excell Communications (2000-2017), Gilson Construction Ltd. (1991), Heart and Stroke Foundation of Ontario (2000), Mak Boat Sales (2012-2017), National Bank of Canada Ajax (1991), Novanet Communications (1995-2021), Pickering Audio Visual (2000-2021), Positive Changes Hypnosis (2012), Stationers Marketing of Canada Inc. (1995), Road Lanes Publishing (2021), T L P General Contractors Ltd (1991), Trenway Communications Services Ltd (1995), and UDI Office Centre Canada Ltd (2000).

The remaining parts of the Site comprise asphalt-paved, grass, and landscaped areas.

Water Bodies / Areas of Natural Significance

There are no water bodies or areas of natural significance on the Phase One Property. Duffin's Creek is located approximately 800 m northwest of the Phase One Property which flows southward to Lake Ontario. No Areas of Natural Significance are within the Phase One Study Area.

Drinking Water Wells

There are no drinking water well records for the Phase One Property; however there are two (2) well records within a 250 m search radius. These records relate to monitoring observation wells in the vicinity of the Phase One Property.

Neighboring Land Use

The Phase One Study Area is developed with residential, industrial and commercial land uses including automotive repair by Sortech Automotive Corp & Seal Auto Glass & Trim since 2012, chemical manufacturing by Septo-Clean Ltd since 2012, metal fabrication by Ko-Tek Manufacturing & Bayview Metals since 2020, Craftsmen Printers in 1991, and plastics manufacturing by Roven Tool & Mould between 1997 and 2004 at 700 Finley Avenue, metal fabrication by Die-Max Tool & Die Ltd since at least 2007 at 729 Finley Avenue, vehicle maintenance and storage by Rock Brune Bros since at least 1981 at 725 Finley Avenue, automotive repair and metal fabrication since at least 1989 at 717 Finley Avenue, automotive repair since at least 2003 at 711 Finley Avenue, a metal and scrap collection facility Apick Scrap Metal Inc. since at least 2005 at 695 Finley Avenue, a machine shop (E.J. Industries Ltd) and fuel storage operations at 765 Westney Road South, as presented in **Drawing 2**.

Areas of Potential Environmental Concerns (APECs)

Based on the findings of the historical record review, Site reconnaissance, and interviews, any APECs located on the Phase One Property and within the Phase One Study Area are labeled and located, as shown in **Drawing 3**. The following Potentially Contaminating Activities (PCAs) were found to be associated with the current or historical land uses of the Phase One Property and/or Phase One Study Area:

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #1: Existing Waste Generator & Car Wash Chemicals Manufacturing	Western portion of Phase One Property	#33. Metal Treatment, Coating, Plating and Finishing #50. Soap and Detergent Manufacturing, Processing and Bulk Storage #40. Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Manufacturing, Processing, Bulk	Off-Site – Besnovo Technologies generating petroleum wastes and performing laser de-coating since at least 2018; Coopers Agropharm Inc. is registered as pesticides vendor and is a manufacturer of veterinary supplies and drugs between 1991 and 1995; Mondo Products	Metals, Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine (OC) Pesticides	Soil & Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
		Storage, and Large Scale Applications	Co Ltd operating as a car wash chemicals manufacturer and generating petroleum and hazardous wastes since at least 1999 to at least 2022 adjacent to the Phase One Property at 695 Westney Road South.		
APEC #2: Existing Automotive Repair, Metal Fabrication, & Plastic and Chemical Manufacturing, Machine Shop Operations, and Former Printing, Metal Plating, Machine Shop Operations & Plastic Manufacturing, Former Storage Tank	Northern portion of Phase One Property	#8. Chemical Manufacturing, Processing and Bulk Storage #10. Commercial Autobody shops #31. Ink Manufacturing, Processing and Bulk Storage #34. Metal Fabrication #43. Plastics (including Fiberglass) Manufacturing and Processing #52. Storage, Maintenance, Fueling, And Repair Of Equipment, Vehicles, And Material Used To Maintain Transportation Systems #28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site – Seal Auto Glass & Trim and Sortech Automotive Corp operating as automotive repair and auto body shops since at least 2012, Rapid Packaging Systems Ltd operating as a plastics manufacturer since at least 2017, Septo- Clean Ltd operating as chemical products manufacturer since at least 2012, Ko-Tek Manufacturing operating as Metal fabrication since 2012, Bayview Metals operating as a machine shop in 2020, Craftsmen Printers operating in 1991, Emifri Shield Plating operating between 1986 and 1998, Holscoe Precision Tooling operating as a machine shop in 2004, Roven Tool and Mould operating	Metals, As, Sb, Se, PHCs, Benzene, Toluene, Ethylbenzene, Xylene (BTEX), VOCs	Soil & Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
			as plastics manufacturer between 1997 and 2004 adjacent to the north property boundary of the Phase One Property at 700 Finley Avenue. In addition, one record for an expired 1,750-L storage tank with unknown content is listed for Wooden Paddle Candy Co in 1993.		
APEC #3: Existing Metal Coating and Treatment	Eastern portion of Phase One Property	#34: Metal Fabrication #33: Metal Treatment, Coating, Plating and Finishing	Off-Site – Die- Max Tool & Die Ltd operating since at least 2007 and Progress Machine Co operating as a woodworking machinery manufacturing facility between 1962 and 2000 at 729 Finley Avenue.	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #4: Existing Automotive Repair Operations	Northeastern portion of Phase One Property	#52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-Site – Rockbrune Bros performing vehicle and equipment maintenance and repair since at least 1981 at 725 Finley Avenue	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #5: Existing Automotive Repair & Painting Operations and Former Machine Shop Operations	Northeastern portion of Phase One Property	#10: Commercial Autobody Shops #33: Metal Treatment, Coating, Plating and Finishing #39. Paints Manufacturing, Processing and Bulk Storage	Off-Site – Autobahn East operating since at least 2013, Ny- Mould Industries operating as a machine shop in 1989, and Red Tower operating since at least 2017 at 717 Finley Avenue	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #6: Automotive Repair Operations	Northeastern portion of Phase One Property	#10: Commercial Autobody Shops #52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-Site – Padhiana Auto Ltd. operating as an autobody shop in 2002 and 2003, Kelly & Sons Auto Repair operating since at least 2015 and Precision Motorsport operating since at least 2021 at 711 Finley Avenue.	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water
APEC #7: Existing Scrap Metal Facility, Former Forklift Repair Operations, and Former Woodworking Shop	Northern portion of Phase One Property	#2. Adhesives and Resins Manufacturing, Processing and Bulk Storage #39. Paints Manufacturing, Processing and Bulk Storage #52. Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems #58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-Site – Apick Scrap Metal Inc operating as a Metal and scrap collection facility since at least 2005, Lifestyle Cabinets, Bantam Trades and Services operating in 1984, and D&K Forklift Services Ltd. generating wastes from 1992 to 2001 at 695 Finley Avenue.	PHCs, BTEX, VOCs, Metals, As, Sb, Se	Ground Water
APEC#8: Former Petroleum Products Suppliers With Storage Tanks, Former and Current Machine Shops and Metal Products Manufacturing	Southeastern Portion of Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks #33. Metal Treatment,	Off-Site – First Choice Petroleum and Olco Petroleum Group listed as having 13 records for gasoline/diesel storage tanks with	Metals, As, Sb, Se, PHCs, BTEX, VOCs, PAHs	Ground Water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
		Coating, Plating	unknown volume		
		and Finishing	and installation		
		#34. Metal	date; Comtrade		
		#34. Metal Fabrication	Petroleum Inc. listed as		
		rabilication	generator of		
			waste oils and		
			lubricants since at		
			least 1990 to at		
			least 1998;		
			MP Gas Bar		
			operating as a		
			petroleum		
			products supplier		
			in 1991; Bel-Merit		
			operating as a		
			metal machinery		
			fabrication facility		
			in 1996. Pro-Bel		
			operating as		
			metal products		
			manufacturer		
			since at least		
			1991; E.J.		
			Industries Ltd. Is		
			listed as operating		
			as a machine shop and		
			fabricated metal		
			products since at		
			least 2012		
			at 765 Westney		
			Road South.		

Additional PCAs that were identified in association with the Phase One Study Area that are <u>not</u> considered to pose an APEC on the Phase One Property include:

PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
#34: Metal Fabrication	Off-Site at 20 Barr Road	Metals, As, Sb, Se, PHCs, VOCs	N/A
#12: Concrete, Cement and Lime Manufacturing			
#34: Metal Fabrication: John Ewing operating in 2000.	Off-Site at 12 Chisholm Court	Metals, As, Sb, Se PHCs, VOCs, PAHs	N/A
NA – SPILL: 150L of Diesel Fuel spilled in 2007			
#39: Glass Manufacturing	Off-Site at 2	Metals, As, Sb, Se, PHCs,	N//A
#34: Metal Fabrication	Chisholm Court	VOCs, PAHs	N/A

PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
#51: Solvent Manufacturing, Processing and Bulk Storage			
#33: Metal Treatment, Coating, Plating and Finishing #34: Metal Fabrication	Off-Site at 4 Chisholm Court	Metals, As, Sb, Se, PHC, VOCs	N/A
#19: Electronic and Computer Equipment Manufacturing #27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles: Sea Smart Technologies operating as a marine repair facility in 2000. #31: Ink Manufacturing, Processing and Bulk Storage: Applebee Graphics Inc. operating as a printing facility in 1988.	Off-Site at 785 Westney Road South	Metals, As, Sb, Se, PHCs, VOCs, PAHs	N/A
#34: Metal Fabrication	Off-Site at 795 Westney Road South	Metals, As, Sb, Se	N/A

Description of Assessment

PCAs with known or potential to affect the Phase One Property are as follows:

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
695 Westney Road South	Western Portion of Phase One Property	Metals, As, Sb, Se, PHCs, VOCs, PAHs, OC Pesticides	Potential
700 Finley Avenue	Northern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
729 Finley Avenue	Eastern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
725 Finley Avenue	Northeastern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
717 Finley Avenue	Northeastern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
711 Finley Avenue	Northeastern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
695 Finley Avenue	Northern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Potential
765 Westney Road South	Southeastern Portion of Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, PAHs, VOCs	Potential

Additional PCAs that are **not** considered to pose an APEC to the Phase One Property are as follows:

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
12 Chisholm Court	N/A	Metals, As, Sb, Se, PHCs, BTEX, VOCs	N/A
20 Barr Road	IN/A	Metals, As, Sb, Se, PHCs, BTEX, VOCs	IN/A
2 Chisholm Court		Metals, As, Sb, Se, PHCs, BTEX, VOCs	

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
4 Chisholm Court	Properties are inferred to be	Metals, As, Sb, Se, PHCs, VOCs	Properties are inferred to be
785 Westney Road South	located hydraulically cross-	Metals, As, Sb, Se, PHCs, BTEX, VOCs	located hydraulically cross-
	gradient and/or down-gradient		gradient and/or down-
795 Westney Road South	from the Phase One Property	Metals, As, Sb, Se, PHCs, BTEX, VOCs	gradient from the Phase One
			Property

Underground utilities are expected to be present on the subject property (sanitary sewer, storm sewer, city water, natural gas, telephone, electricity) and could potentially act as preferential pathways.

Local surficial geologic mapping (The Ontario Geological Survey, 2003) of the Ajax area indicates that pleistocene stone-poor, carbonate-derived silty to sandy till, underlie the Phase One Property.

The Phase One Property is located approximately 800 m southeast of Duffin's Creek, which flows southward into Lake Ontario. The local hydrogeology is controlled by this waterbody, the underlying geology, and the topography, and local ground water flow is expected to be southwestward. The regional ground water flow is expected to be southward towards Lake Ontario.

The exemption set out in Section 49.1 of Ontario Regulation 153/04 is being relied upon relating to the use of road salt for de-icing operations on the eastern and southern portion of the Phase One Property. An interview with the existing tenant indicated the use of road salt for de-icing operations for the safety of vehicular and/or pedestrian traffic under conditions of snow or ice or both. Observations conducted during the field sampling program confirmed the use of road salt on the eastern and southern portion of the Phase One Property for safety purposes due to snow and/or ice. Therefore, the exemption applies to the Phase One Property and is not considered to be an environmental concern that requires further investigation.

It is not expected that any uncertainty or absence of information would affect the validity of the Conceptual Site Model (CSM).

3.4 Deviations from Sampling and Analysis Plan

The field investigation and sampling program was carried out following the requirements of the Sampling and Analysis Plan (SAP) (shown in **Appendix A1**) with the following exceptions.

Due to the lack of ground water in BH/MW23-7, ground water sampling did not occur.

3.5 Impediments

There were no impediments at the Site during the Phase Two ESA on-site investigation.

4. Investigation Method

Fieldwork for this investigation began on November 28, 2023 by soil sampling from a total of seven (7) exterior boreholes drilled to depths of 8.40 to 9.90 m below existing grade with the installation of seven (7) monitoring wells at the locations shown in **Figure 8.2.2**. The boreholes on the Phase Two Property were strategically placed to address the PCAs and APECs identified in Table A.

4.1 General

This section of the report describes the various investigation methods used in the Phase Two ESA, including drilling, soil sampling, monitoring well installation, ground water sampling and analytical testing.

The Phase Two ESA was carried out in accordance with Palmer's SAP (Appendix A1).

The borehole locations were established in the field by Palmer staff prior to drilling. *Ontario One-Call* was contracted to locate and clear buried utility lines including telephone cables, natural gas mains, and hydro power lines. All the detected underground lines were identified on the ground by marking paints of various colours, as shown in **Drawing 2**.

<u>Soil</u>

Representative soil samples were recovered at each of the borehole locations. The soil stratigraphy was logged during drilling as soil samples were collected with dedicated dual tubes. Visual observations of any foreign materials or odours were also logged. The Finalized Field Logs are presented in **Appendix A2**.

Soil samples were split into portions that were collected into a plastic bag and a sample jar. Head space vapour concentrations were determined by allowing the bags to warm up to ambient temperature, probing into partially opened bags using a monitoring probe, and measuring the sample head space with a PID. Selected samples were placed in laboratory-supplied glass jars or vials and stored in a cooler during transport to the laboratory.

Ground Water

Upon completion of drilling, a 50-mm diameter PVC monitoring well was installed in seven (7) boreholes for ground water monitoring. Initial ground water levels were measured and a dedicated length of low-density polyethylene (LDPE) tubing was inserted into the wells.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses using a low-flow peristaltic pump. Samples were also placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

4.2 Drilling and Excavating

Boreholes were advanced by using a CME 55 mounted on a track equipped with augers and dual tubes, supplied and operated by Davis Drilling under the direction of Palmer staff.

Disposable nitrile gloves were used and replaced between the handling of samples and all soil sampling equipment (stainless steel trowels, spatulas, etc.) was thoroughly decontaminated between soil sample locations to prevent potential cross-contamination. Decontamination activities included physical removal of any adhered debris, wash/scrub in "Alconox" soap solution, distilled water rinse, methanol rinse, and air dry.

Samples were collected continuously from the dual tubes. Samples submitted to the laboratory were based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern.

4.3 Soil: Sampling

All soil samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. The equipment used to collect the soil samples was previously discussed in Section 4.0, 4.1, and 4.2.

The observed soil stratigraphy generally comprised surficial asphalt pavement or grass overlying sand and/or gravel, topsoil, clayey silt, silty clay or sandy silt fill, which was underlain by a stratum of sandy silt till, as described in **Table 2** below. The Finalized Field Logs are provided in **Appendix A2**.

Table 2. Soil Stratigraphy Summary

Borehole/ Monitoring Well ID	Soil Stratigraphy	Depth (m)	Observations
	Asphalt Pavement	0 to 0.08	No staining observed on the surface
	Clayey Silt Fill	0.08 to 0.88	No staining or odour observed in this stratum
BH/MW23-1	Sandy Silt Fill	0.88 to 3.88	Staining and odour observed in this stratum
	Sandy Silt Till, trace gravel and cobbles	3.88 to 8.48	No staining; some odour observed in this stratum
	Asphalt Pavement	0 to 0.09	No staining observed on the surface
	Sand and gravel Fill, trace silt	0.09 to 0.89	Odour identified in this stratum
	Clayey Silt Fill, trace gravel and cobbles	0.89 to 1.59	No staining or odour observed in this stratum
BH/MW23-2	Silty Clay Fill, trace organics and cobbles	1.59 to 3.89	No staining or odour observed in this stratum
	Clayey Silt Till, trace gravel and cobbles, grey	3.89 to 4.69	No staining or odour observed in this stratum
	Sandy Silt Till, trace clay and gravel	4.69 to 9.99	No staining or odour observed in this stratum
	Asphalt Pavement	0 to 0.08	No staining observed on the surface
BH/MW23-3	Sand and gravel Fill, trace cobbles	0.08 to 1.58	No staining or odour observed in this stratum

Borehole/ Monitoring Well ID	Soil Stratigraphy	Depth (m)	Observations
	Silty Clay Fill, trace gravel	1.58 to 3.88	No staining or odour observed in this stratum
	Sandy Silt Till, trace boulders and cobbles	3.88 to 9.98	No staining or odour observed in this stratum
	Asphalt Pavement	0 to 0.08	No staining observed on the surface
BH/MW23-4	Clayey Silt Fill, trace gravel and sand	0.08 to 3.18	No staining or odour observed in this stratum
	Sandy Silt Till, trace gravel	3.18 to 8.48	No staining or odour observed in this stratum
	Asphalt Pavement	0 to 0.08	No staining or odour observed on the surface
BH/MW23-5	Clayey Silty Fill, trace sand and gravel	0.08 to 4.57	Odour and staining observed in this stratum
	Sandy Silt Till, trace gravel	4.57 to 8.48	Odour identified in this stratum
BH/MW23-6 BH/MW23-7	No Stratum observed, Straight auger for Well Installation	0 to 8.70	No staining or odour observed in auger cuttings

4.4 Soil: Field Screening Methods

All soil samples were screened in the field for evidence of staining and odours. Soil sample headspace screening was also performed to facilitate sample selections for laboratory analysis and to provide an assessment of the vertical contaminant distributions at each borehole location.

The soil sample headspace screening was conducted with a PID Thermo 580B calibrated to a known isobutylene gas. The PID readings were recorded in parts per million (ppm), as shown in the Finalized Field Logs in **Appendix A2**.

4.5 Ground Water: Monitoring Well Installations

Upon completion of drilling, a 50-mm diameter, flush-joint threaded PVC monitoring well was installed in seven (7) of the boreholes for ground water monitoring by Davis Drilling under the direction of Palmer staff.

The monitoring wells included a 3 m length of slotted PVC intake screen. The wells were then extended from the top of the intake screen to the ground surface using solid PVC riser pipe. A silica sand filter pack was placed between the intake screen and the wall of the borehole. The filter pack was extended approximately 0.6 m above the top of the well screen to allow for settlement of the sand packs and to accommodate expansion of the overlying well seals. A bentonite seal was placed above the sand pack and extended to approximately 0.3 mbgs. Concrete and a flushmount well casing or aluminum stick-up casing were installed between 0.3 mbgs and the ground surface. No glue was used in the construction of the monitoring well.

Elevations and associated monitoring well construction details are shown in Table 8.1.1. The location of the monitoring wells are shown in Figure 8.2.3, and the well completion diagrams are also shown on the Finalized Field Logs in Appendix A2.

All ground water monitoring wells installed at the Phase Two Property were instrumented with sufficient lengths of LDPE tubing to facilitate well development and purging requirements. Following the initial installation, depths to the static water level were measured and each monitoring well was developed by purging either three (3) well casing volumes or until the well went dry at least once. The well development occurred in order to remove any fluids that may have been introduced into the well during drilling, to remove particulates that may have become entrained in the well and filter pack, to stabilize and grade the filter pack, improve connectivity between the well and the formation, and restore ground water that may have been disturbed or altered during the drilling process to ensure the samples to be representative of true formation waters. The purging activities were carried out using the dedicated LDPE tubing and a low-flow peristaltic pump.

Purging of the five installed monitoring wells was completed on December 7, 2023 and was as follows:

Table 3. Monitoring Well Development Details

Monitoring Well ID	Date of Development/Purging	Time of Development/Purging	Volume of Fluid Removed from Well (L)
MW23-1	December 7, 2023	12:50	11.20
MW23-2	December 7, 2023	1:30	3.70
MW23-3	December 7, 2023	7:20	10.15
MW23-4	December 7, 2023	7:40	10.30
MW23-5	December 7, 2023	11:30	12.30
MW23-6	December 7, 2023	3:30	1.70
MW23-7	December 7, 2023	-	DRY

The development was completed on the aforementioned date as six (6) of the seven (7) monitoring wells were purged until dry. MW23-7 was observed to have no ground water.

4.6 **Ground Water: Field Measurement of Ground water Quality Parameters**

On December 7, 2023, after the monitoring wells were purged until dry, the following water quality field parameters were measured using a Quanta multi-probe prior to sampling:

Table 4. Ground Water Quality Parameters

Monitoring Well ID	pH (pH units)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)
MW23-1	7.12	3.398	8.63	12.65
MW23-2	7.05	1.530	12.86	11.74
MW23-3	7.16	2.165	6.52	12.43
MW23-4	7.24	0.657	4.28	12.33

Monitoring Well ID	pH (pH units)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)
MW23-5	6.47	1.250	17.86	11.66
MW23-6	7.02	1.232	5.65	11.23

4.7 Ground Water: Sampling

All ground water samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. Any equipment used to collect the ground water samples are previously discussed in *Section 4.0, 4.1,* and *4.2*.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses. During the sampling round, ground water samples were collected using a low-flow peristaltic pump, with dedicated tubing installed in each of the monitoring wells. This method minimizes the velocity of the formation water entering the well screen, as the drawdown is kept to a minimum (i.e., less than 10 cm) by adjusting the pumping rate. The samples were placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

Ground water monitoring, including measuring the depth to the stabilized water level, was conducted on December 7 and 14, 2023. Measurements of ground water depth were made using an electronic oil water interface probe. Ground water level measurements are shown in **Table 8.1.2**.

In addition, the ground water was screened in the field (during all monitoring events) for evidence of free product including presence of liquid petroleum hydrocarbons (LPH), sheen (iridescence), odour and colour, as summarized in **Table 8.1.3**

4.8 Sediment: Sampling

As no water bodies are present on the Site, sediment sampling was not within the scope of this Phase Two ESA.

4.9 Analytical Testing

ALS Environmental (ALS) performed chemical analysis on soil and ground water samples collected from boreholes/monitoring wells at the Site. ALS is an accredited laboratory under the Standards Council of Canada (SCC) and the Canadian Association for Laboratory Accreditation (CALA), in accordance with the international standard ISO/IE 17025:2005 – General Requirements for the Competence of Testing and Calibration. ALS is accredited for all parameters required under Ontario Regulation 153/04 – Record of Site Condition, as outlined in MECP Technical Update entitled "Laboratory Accreditation Requirements under the New Records of Site Condition Regulation (O. Reg. 153/04).

Based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern, thirty (30) selected soil samples (representative of fill materials and native soils), and thirty-two (32) ground water samples were submitted to ALS Environmental, for the following analyses:

• PHCs and BTEX on six (6) soil and seven (7) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);

- VOCs on six (6) soil and eight (8) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample and one (1) Trip Blank sample for ground water);
- PAHs on four (4) soil and six (6) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);
- OC Pesticides on four (4) soil and four (4) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);
- Metals on six (6) soil and seven (7) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);
- pH on three (3) soil samples (including one (1) QA/QC sample); and,
- Grain Size Hydrometer Sieve on one (1) soil sample.

The Laboratory Certificate of Analyses and Analytical Reports are reproduced in Appendix A3.

4.10 Residue Management Procedures

All soil cuttings from the borehole drilling activities, water from the well development and purging, and all fluids from equipment cleaning are stored in secure containers on the Phase Two Property.

The secure containers will be collected from the Site for off-Site disposal after conclusion of the Geotechnical Investigation.

4.11 Elevation Surveying

The ground surface elevation of borehole and monitoring wells was surveyed by Palmer personnel. The elevations were surveyed based on a marked local benchmark. The benchmark is at Station 0011910U002, located at Pickering C.N. Railway, bridge over Duffin Creek, 0.8 km east of station, bolt in north face of north stone retaining wall at east end of bridge. The elevation at this point is understood to be at Ellipsoidal Elev. 88.99 metres.

A legal survey of the Phase Two Property can be seen in **Appendix A4**.

4.12 Quality Assurance and Quality Control Measures

A Quality Assurance and Quality Control (QA/QC) program, developed as part of the SAP, was followed by Palmer to ensure the integrity of all soil and ground water samples was maintained and that they were representative of the Site conditions. The QA/QC program was developed in accordance with the Analytical Protocol.

The jars and preservatives (where applicable) used in the collection of soil and ground water samples were supplied by ALS Environmental. The soil samples intended to be submitted for analysis of VOCs and PHC F1 were immediately preserved in laboratory provided methanol vials to sequester the volatile compounds.

The soil samples from the boreholes which were advanced using solid stem augers were collected with split spoon samplers which were decontaminated after the extraction of each sample.

The soil and ground water samples were labelled as they were collected. Samples were stored in ice-packed coolers, until the samples were transported to the laboratory for chemical analysis.

The soil and ground water samples were handed over to the laboratory by Palmer staff. Chains of Custody of the samples were logged with Chain of Custody Forms.

As discussed in Section 4.4 above, the monitoring wells were installed by direct drilling with solid stem augers. All drilling equipment arrived at the Site in a pre-cleaned condition. The augers were cleaned with a brush and washed between monitoring well locations.

The stainless-steel sampling tool (trowel) was decontaminated between sampling locations in the following sequence: cleaned with a brush to remove adhered soil and/or debris, rinsed with distilled water and allowed to air dry.

Field duplicate samples for both soil and ground water were submitted to ALS for chemical analysis for QA/QC purposes.

For soil samples, five (5) duplicate samples (23-2-2D, duplicate of 23-2-2, 23-2-4D, duplicate of 23-2-4, 23-4-4D, duplicate of 23-4-4, 23-5-2D, duplicate of 23-5-3D, duplicate of 23-5-3) were submitted to ALS for analysis.

For ground water samples, three (3) duplicate ground water samples (23-3D, duplicate of 23-3, 23-4D, duplicate of 23-4, and 23-5D, duplicate of 23-5) and one (1) trip blank were submitted to ALS for analysis.

The laboratory quality assurance program included the analysis of laboratory duplicate samples, methods blanks, matrix spikes and samples of reference materials, in accordance with the Analytical Protocol.

5. Review and Evaluation

5.1 Geology

The subsurface profiles and associated below grade elevations encountered at the Phase Two Property are described in the Finalized Field Logs in **Appendix A2**.

The estimated thickness range of each geologic unit is as follows:

Table 5. Summary of Geology

	Geologic Unit	Range Depth (m)	
Surface	Asphalt Pavement	0.00 to 0.09	
	Grass	0.00 to 0.03	
	Clayey Silt Fill	0.08 to 4.57	
Fill Strata	Gravel or Sand Fill	0.08 to 1.58	
	Sandy Silt Fill	0.88 to 3.88	
	Silty Clay Fill	1.58 to 3.89	
	Clayey Silt Till (trace gravel and cobbles)	3.89 to 4.69	
Till Strata	Sandy Silt Till (trace gravel, cobbles, boulders)	3.18 to 9.99	
Bedrock	Not encountered, based on nearby studies, bedrock is expected to be ~100 m below ground elevation		

The soil across the property is considered to be medium-fine textured for the purpose of this ESA.

5.2 Ground Water: Elevations and Flow Direction

Ground water levels were measured in the monitoring wells on December 14, 2023, using a Solinst Interface Probe. Ground water levels and measured elevations are presented on the borehole logs and are summarized below:

Table 6. Summary of Ground Water Conditions

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)	Observations
BH/MW23-1	12/14/23	92.38	5.94	86.44	None
BH/MW23-2	12/14/23	92.17	8.27	83.90	None
BH/MW23-3	12/14/23	91.53	7.73	83.80	None
BH/MW23-4	12/14/23	91.18	6.12	85.06	None
BH/MW23-5	12/14/23	92.55	6.10	86.45	None
MW23-6	12/14/23	92.54	8.39	84.15	None

June 17, 2024 Palmer 1904320 Phase Two Esa -725 Westney Rd S-F

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)	Observations
MW23-7	12/14/23	92.40	-	-	Dry

The results of the ground water monitoring indicated that the primary near surface water table resides within the sandy silt native (till) layer.

As summarized in **Table 8.1.3**, no free-product was observed in any of the monitoring wells monitored on the Phase Two Property.

Based on the overburden ground water elevations, the ground water is interpreted to generally flow across the Site in a southwesterly direction. The ground water elevations and interpreted flow direction is presented in **Figure 8.2.3**.

Temporal variability in the ground water flow direction could not be assessed during this Phase Two investigation since ground water elevations were obtained during two (2) field visits in Winter 2023 and no historical ground water data is available.

5.3 Ground water Hydraulic Gradients

The horizontal hydraulic gradient was estimated for the water table based on the December 14, 2023 ground water elevations.

The horizontal hydraulic gradient is calculated using the following equation:

 $i = \Delta h/\Delta s$

Where,

i = horizontal hydraulic gradient

 Δh (m) = Ground water elevation difference; and,

 Δs (m) = separation distance.

The following horizontal hydraulic gradient calculations using ground water monitoring data across the site revealed lower hydraulic gradients within the upper till unit on the Phase Two Property:

		Horizontal Hydraulic Gradient in Native (Till) Unit (m/m)	
	Average	0.009	
Horizontal	Maximum	0.123	
	Minimum	0.007	

It should be noted that vertical hydraulic gradients were not evaluated for the Site and ground water impacts were not vertically distributed at the depths investigated at the Phase Two Property.

The hydraulic conductivity of the Sandy Silt Till unit was derived by using Puckett's formula, which uses the percentage of clay or percentage of the sample finer than 0.002 mm by weight (refer to laboratory grain size analyses provided in **Appendix A3**). Based on grain size analysis testing, the hydraulic conductivity of the native till is on the order of 5.54x10⁻⁷ m/s. Therefore, the soil's ability to transmit water across the site (in the native till materials) is slow and verifies that the potential for vertical migration of contamination is limited on the Phase Two Property. Furthermore, a hydraulic conductivity of 5.54x10⁻⁸ m/s is consistent with an unconsolidated deposit of glacial till with silt and loess (Freeze and Cherry, 1979) and represents a moderately impermeable aquitard unit.

5.4 Fine-Medium Soil Texture

Fine-medium soil texture was used for this investigation, as soil grain size analyses conducted by ALS Environmental on one (1) soil sample collected from the native till unit (BH23-1), revealed medium-fine loam (a mixture of sand, silt, and clay) till. Grain size analysis for this sample revealed 32.08% silt and 22.1% clay, corresponding to 54.18% of medium to fine textured soil, which is greater than 50%. Therefore, medium to fine texture soil standards are applicable to Site.

5.5 Soil: Field Screening

Sample headspace screening with the PID yielded readings from non-detect to 25 ppm, as shown in the Finalized Field Logs in **Appendix A2**.

These readings and any field observations (staining, odours, etc.) were considered when selecting soil samples for laboratory analyses.

5.6 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on visual and/or olfactory evidence of impacts, known historical contamination and the presence of potential water bearing zones. The results of the soil sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.4**.

A total of seventeen (17) soil samples, including five (5) duplicate soil samples were submitted to ALS Environmental, for analysis of various COPCs to investigate the soil and ground water quality related to the aforementioned APECs. These COPC included PHCs, PAHs, VOCs, BTEX, Metals parameters (As, Sb, Se), Organochlorine (OC) Pesticides, pH and Gravimetric Hydrometer & Sieve. One additional soil sample was submitted for Toxicity Characteristic Leaching Procedure Analysis of PHCs, VOCs, PAHs and ICPMS Metals.

Based on current soil sampling results, no exceedances in soil have been identified in comparison with the Table 3 SCS on the Phase Two Property, as shown in **Drawings 4a-e.**

Soil maximum concentration data can also be seen in **Table Series 8.1.7**.

5.7 Ground Water Quality

A total of ten (10) ground water samples, including three (3) duplicate ground water samples and one (1) trip blank sample, were submitted to ALS Environmental, for analysis of various COPCs to investigate the soil and ground water quality related to the aforementioned APECs. On December 14, 2023, ten (10) ground water samples, including three (3) duplicates and one (1) trip blank were collected from monitoring wells BH/MW23-1 – BH/MW23-6 to assess ground water quality at the Site. Ground water samples were not collected from monitoring well BH/MW23-7 due to the well being dry. The results of the ground water sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.5**.

No evidence of free product (i.e. visible film or sheen), or odour was observed during well purging and ground water sampling from the newly installed wells and existing wells. Ground water samples that were analyzed for metal parameters were field filtered at the time of collection.

The samples collected were analysed for one or more of the COPCs, including PHCs, PAHs, VOCs, BTEX, Metals parameters (As, Sb, Se), and Organochlorine (OC) Pesticides.

Based on current ground water sampling results, no exceedances in ground water have been identified in comparison with the Table 3 SCS on the Phase Two Property, as shown in **Drawings 5a-e.**

Ground water maximum concentration data can also be seen in Table Series 8.1.7.

5.8 Sediment Quality

Sediment sampling was not part of this investigation, as previously discussed in *Section 4.8* and **Table 8.1.6**.

5.9 Quality Assurance and Quality Control Results

The QA/QC samples for this Phase Two ESA investigation included field duplicates for soil and ground water, and a trip blank for QA/QC purposes. The trip blank was submitted with ground water samples for analysis of VOCs.

The purpose of the duplicate samples is to measure the precision or reproducibility of the field and laboratory methodology used in the collection and analysis of the samples. The precision is evaluated in terms of the relative percent difference (RPD). The RPDs of the primary and duplicate samples were not calculated in situations where the concentrations of both primary and duplicate samples were at least 5 times less than the laboratory Reporting Detection Limits (RDLs) for the parameters analyzed.

Laboratory quality control limits for duplicate, method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

No tested parameters were detected in the trip blank.

All of the samples were handled in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (Analytical Protocol) with respect to preservation methods, storage requirements, or container type without any exception. Holding times were met for all samples.

The RPDs for all remaining reported concentrations were not calculated considering that the results were below the laboratory minimum detection limits or less than 5 times of the method detection limit in both samples. No other QA/QC concerns were noted.

Based on the review of QA/QC sample results of soil and ground water, it is certified that:

- All Certificates of Analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3);
- A Certificate of Analysis report has been received for each sample submitted for analysis; and
- All Certificates of Analysis or analytical reports received have been included in full in Appendix A3
 of this Phase Two ESA report.

ALS has certified that the analytical methods and data meet the requirements of the Analytical Protocol and that holding times were met for all samples.

Laboratory quality control limits for duplicate, method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

The sampling program was carried out in accordance with the SAP. All requirements of the Analytical Protocol were met.

In summary, decision making was not affected by the quality of the data obtained and the overall objectives of the assessment were met.

5.10 Phase Two Conceptual Site Model

Section i. A description and assessment of the Phase Two Property:

The Phase Two Property comprises a 1,436 m², single storey commercial/light industrial building which comprises three (3) units. Unit 1 is vacant and was most recently leased by a kitchen renovation company, Unit 2 is leased by Firearms Outlets Canada, a gun wholesaler, and Unit 3 is leased by Wraptors Inc., a vehicle detailing company. Historically, the Phase Two Property was first developed in the early 1990s with the current building. Tenants of the building have included a home renovations business (2022-2023), All-Canadian Tax Service (2021), Bell Mobility (2000), Children's Wish Foundation (2012-2017), Eastway Management Inc (2012-2021), Excell Communications (2000-2017), Gilson Construction Ltd. (1991), Heart and Stroke Foundation of Ontario (2000), Mak Boat Sales (2012-2017), National Bank of Canada Ajax (1991), Novanet Communications (1995-2021), Pickering Audio Visual (2000-2021), Positive Changes Hypnosis (2012), Stationers Marketing of Canada Inc. (1995), Road Lanes Publishing (2021), T L P General Contractors Ltd (1991), Trenway Communications Services Ltd (1995), and UDI Office Centre Canada Ltd (2000).

A.	Potentially Contaminating Activities (PCAs)	There are	twenty-five (25) PCAs	within the Phase One StudyArea.
	,	PCA 1	Off-Site – 695	
		(Item #33)	Westney Road South	Laser Stripping Facility
		PCA 2	Off-Site – 695	Former Pesticide Supply
		(Item #40)	Westney Road South	Facility
		PCA 3	Off-Site – 695	Car Wash Chemical
		(Item #50)	Westney Road South	Manufacturing Facility
		PCA 4	Off-Site – 700 Finley	
		(Item #8)	Avenue	Chemical Manufacturing Facility
		PCA 5	Off-Site – 700 Finley	Automotive Detailing Facility
		(Item #10)	Avenue	Automotive Detailing Facility
		PCA 6	Off-Site – 700 Finley	Former Tenk Facility
		(Item #28)	Avenue	Former Tank Facility
		PCA 7	Off-Site – 700 Finley	Former Printing Facility
		(Item #31)	Avenue	Former Finding Facility
		PCA 8	Off-Site – 700 Finley	Metal Fabrication Facility
		(Item #34)	Avenue	Wetai i abrication i aciiity
		PCA 9	Off-Site – 700 Finley	Plastics Manufacturing Facility
		(Item #43)	Avenue	riastics Manufacturing Facility
		PCA 10	Off-Site – 700 Finley	Automotive Repair Garage
		(Item #52)	Avenue	Automotive Nepail Garage
		PCA 11	Off-Site – 729 Finley	Former Metal Treatment Facility
		(Item #33)	Avenue	Torrier Wetar Treatment Facility
		PCA 12	Off-Site – 729 Finley	Metal Fabrication Facility
		(Item #34)	Avenue	Wetai i abileation i aciity
		PCA 13	Off-Site – 725 Finley	Automotive Repair Garage
		(Item #52)	Avenue	Automotive Repair Garage
		PCA 14	Off-Site – 717 Finley	Automotive Detailing Facility
		(Item #10)	Avenue	Additionally Betaining Facility
		PCA 15	Off-Site – 717 Finley	Former Machine Shop
		(Item #33)	Avenue	1 office Machine Chep
		PCA 16	Off-Site – 717 Finley	Coating Operations
		(Item #39)	Avenue	Country Operations
		PCA 17	Off-Site – 711 Finley	Former Automotive Detailing
		(Item #10)		Facility
		PCA 18	Off-Site – 711 Finley	Automotive Repair Garage
		(Item #52)	Avenue	, tatemente repair Garage
		PCA 19	Off-Site – 695 Finley	Former Woodworking Facility
		(Item #2)	Avenue	
		PCA 20	Off-Site – 695 Finley	Former Woodworking Facility
		(Item #39)	Avenue	,
		PCA 21 (Item #52)	Off-Site – 695 Finley Avenue	Former Automotive Repair Garage
			Avenue	

		PCA 22	Off-Site – 695 Finley	Scrap Metal Facility	
		(Item #58)		· · · · · · · · · · · · · · · · · · ·	
		PCA 23	Off-Site – 765	Former Petroleum Products	
			Westney Road South	Supplier	
		PCA 24	Off-Site – 765	Metal Treatment Facility	
			Westney Road South		
		PCA 35	Off-Site – 765	Metal Fabrication Facility	
		(item #34)	Westney Road South		
		Refer to Dr	awing 3.		
B.	Areas of Potential	There are	e eight (8) APECs on	the Phase Two Property where	
	Environmental Concerns	PCAs (off	-Site) may have affecte	ed the soil and/or ground water at	
	(APECs)	the Phase	e Two Property:		
			Т		
		APEC 1	_	rator & Car Wash Chemicals r Pesticides Supply Facility	
		APEC 2	Existing Automotive Repair, Metal Fabrication, & Plastic and Chemical Manufacturing, Machine Shop Operations, and Former Printing, Metal Plating, Machine Shop Operations & Plastic Manufacturing, Former Storage Tank		
		APEC 3	Existing Metal Coating	and Treatment	
		APEC 4			
		AFLC 4	Existing Automotive Repair Operations Existing Automotive Repair & Painting Operations and		
		APEC 5	Former Machine Shop		
		APEC 6	Automotive Repair Op	erations	
		APEC 7		Facility, Former Forklift Repair er Woodworking Shop	
		APEC 8		oducts Suppliers With Storage arrent Machine Shops and Metal ag	
		Refer to D	Prawing 3.		
		COPC as following:	sociated with the abov	vementioned APECs include the	

APEC	COPC	Media Potentially Impacted	Borehole/ Monitoring Well Location Sampled for COPC
1	Metals, Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine (OC) Pesticides	Soil & Ground Water	BH/MW23-2 to BH/MW23-4
2	Metals, As, Sb, Se, PHCs, Benzene, Toluene, Ethylbenzene, Xylene (BTEX), VOCs	Soil & Ground Water	BH/MW23-1, BH/MW23-2 and BH/MW23-5
3	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water	BH/MW23-5 to MW23-6/7
4	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water	BH/MW23-1, BH/MW23-5 and MW23-6
5	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water	BH/MW23-1, BH/MW23-5 and MW23-6
6	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Ground Water	BH/MW23-1, BH/MW23-5 and MW23-6
7	PHCs, BTEX, VOCs, Metals, As, Sb, Se	Ground Water	BH/MW23-1, BH/MW23-5 and MW23-6
8	Metals, As, Sb, Se, PHCs, BTEX, VOCs, PAHs	Ground Water	BH/MW23-5 to MW23-6/7

Soil samples associated with APEC 1 were collected at depths between ground surface and 5.33 mbgs and deeper than 6 mbgs in ground water in relation to the potential impacts from the adjacent PCAs to the west.

Soil samples associated with APEC 2 were collected at depths between ground surface and 5.33 mbgs and deeper than 5 mbgs in ground water in relation to potential impacts from the adjacent PCAs to the north.

		Refer to Cross-Section A-A' and B-B'.
C.	•	Subsurface utilities identified on, in, or under the Phase Two Property include: • Sanitary sewer, storm sewer, and municipal water service; and • Enbridge Gas, Elexicon Energy West, Bell Canada, Rogers, Cogeco, and Zayo Canada Fibre.
		Refer to Drawing 2 . Site-wide, subsurface structures and utilities are generally installed above the ground water table at the site.

Section ii. A description of the physical setting of the Phase Two Property:

The Phase Two Property is a 0.66-hectare, square shaped, parcel of land located on the north side of Westney Road South, west of the intersection with Finley Avenue in Ajax, Ontario. Refer to **Drawing 2.**

A. Stratigraphy from ground surface to the deepest aquifer or aquitard investigated The observed soil stratigraphy comprised:

	Geologic Unit	Depth Range (m)		
Cunface	Asphalt Pavement	0.00 to 0.09		
Surface	Grass	0.00 to 0.03		
	Clayey Silt Fill	0.08 to 4.57		
Fill	Gravel or Sand Fill	0.08 to 1.58		
Strata	Sandy Silt Fill	0.88 to 3.88		
	Silty Clay Fill	1.58 to 3.89		
Till	Clayey Silt Till (trace gravel and cobbles)	3.89 to 4.69		
Strata	Sandy Silt Till (trace gravel, cobbles, boulders) 3.18 to 9.9			
	Not encountered, based on nearby studies, bedrock			
Bedrock	is expected to be ~100 m below grou	nd elevation Not		
	Encountered.			

Fill strata was identified between 0.083 and 3.89 m below existing grade; however, no evidence of any man-made materials (i.e., waste, debris, concrete, etc.) was observed in the strata. Therefore, the observed fill material is considered to be re-worked native materials.

Refer to Cross-Sections A-A' and B-B'.

One (1) soil sample was collected in the till strata between 6.10 and 6.86 mbg to determine the soil grain size for the Phase Two Property. Soil grain size analyses conducted by the laboratory classified the soil as sand and silt and some clay comprising

В.	Hydrogeological characteristics	approximately 54.18% silt and clay. Since more than 50% of the particles were smaller than 75 micrometres in diameter, the assessment criteria corresponding to medium-fine textured soils were selected for comparison in laboratory analytical results. The results of the ground water monitoring indicated that the primary near surface water table resides within the clayey silt native (till) layer. Ground water flow is interpreted to flow across the Site in a southwesterly direction. Refer to Figure 8.2.3. The following horizontal hydraulic gradient calculations using ground water monitoring data across the site revealed lower hydraulic gradients within the upper fill unit on the Phase Two Property:			
		. ,		Native (Till) Unit	
			Average	0.009 m/m	
		Horizontal	Maximum Minimum	0.123 m/m 0.007 m/m	
		the native till is transmit water acre	5.54x10-7 m/s. oss the site (in the tential for migratio	g, the hydraulic conductivity of Therefore, the soil's ability to native till materials) is slow and on of contamination is limited on	
C.	Approximate depth of bedrock	Well and Boreho	le records within	g this investigation. the Phase One Study Area imately 100 mbgs in the vicinity	
		of the Phase Two			
D.	Approximate depth to water table	Ground water w generally in the na		tween 5.94 to 8.62 mbgs	
E.	Any respect in which Section 35, 41, or 43.1 of the regulation applies to the property	 Phase Two Property a of the property system, as def (shown in Dray) The proposed use; The property is municipal offici designation ide groundwater, as defeated as a second control of the property is municipal officing designation ide groundwater, as a second control of the property is municipal officing designation ide groundwater, as a second control of the property is municipal officing designation idea groundwater, as a second control of the property is municipal officing the property is municipal officing the property and the property as a second control of the prope	rty based on the found all properties leare supplied by a fined in the Safe Dwing 3); use of the Phase is not located in an ial plan as a well-lentified by the multiple and there are no we study Area used	on standards, applies to the ollowing: ocated within a 250 m radius a municipal drinking water orinking Water Act, 2002 Two Property is commercial area designated in the nead protection area or other nicipality for the protection of wells on the property or within I for human consumption or	

		 The local and regional municipality have consented in writing to the application of the non-potable site condition standards.
		Section 41 and 43.1 do not apply to the Phase Two Property.
F.	Areas on, in, or under the Phase Two Property where excess soil is finally placed	Excess soil has not been placed at the Site for backfilling and/or regrading purposes.
G.	Approximate locations, if known, of any proposed	The proposed redevelopment will be commercial.
	buildings and other structures	The commercial redevelopment will comprise a two-storey extension of the existing building following the demolition of the north half of the existing structure. The proposed building addition location is shown in Drawing 2 .

Section iii. Where a contaminant is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of:

A. B.	Each area where a contaminant is present on, in or under the Phase Two Property The contaminants associated	Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property. Refer to Drawings 4 and 5 . Not applicable, as no contaminants were identified in
	with each of the areas referred to in subparagraph A	concentrations greater than the applicable SCS on, in, or under the Phase Two Property.
C.	Each medium in which a contaminant associated with an area referred to in subparagraph is present	Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property.
D.	A description and assessment of what is known about each of the areas referred to in subparagraph A	Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property.
E.	The distribution, in each of the areas referred to in subparagraph A	Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property. Figure 8.2.2 shows the profile locations for Cross-Sections A-A' and B-B' and depict the soil stratigraphy and samples locations within the Phase Two Property. No areas of soil or ground water contamination were identified during the investigation.

F.	Anything known about the	See Item A.
	reason for the discharge of the	
	contaminants present on, in or	
	under the Phase Two Property	
	at a concentration greater than	
	the applicable site condition	
	standard into the natural	
	environment	
G.	Anything known about	This does not apply to the Phase Two Property. No areas of
	migration of the contaminants	contamination were identified on, in, or under the Phase Two
	present on, in or under the	Property during this investigation.
	Phase Two Property at a	
	concentration greater than the	
	applicable site condition	
	standard away from any area	
	of potential environmental	
	concern, including the	
	identification of any	
	preferential pathways	
Н.	Climatic or meteorological	Meteorological conditions may have influenced the distribution and
'''	conditions that may have	migration of the contaminants by raising the ground water table.
	influenced distribution and	However, the calculated hydraulic conductivity revealed the soil's
	migration of the contaminants	ability to transmit water across the site (in the native till materials)
	ringration of the contaminants	is slow and verifies that the potential for migration of contamination
		is limited on the Phase Two Property.
		is inflited on the Friase Two Froperty.
		Ground water data for the Site does not suggest considerable
		influence on seasonal ground water levels due to climatic or
		meteorological conditions.
I.	If applicable, information	Soil vapor samples were not collected as part of this Phase Two
"	concerning soil vapour	ESA.
	intrusion of the contaminants	
	into building including, (1)	
	relevant construction features	
	of a building, such as a	
	basement or crawl space, (2)	
	building heating, ventilation	
	•	
	and air conditioning design	
	and operation, (3) subsurface	
	utilities	

Section iv. Where contamination is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, one or more cross-sections:

Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property.

Refer to Cross-Section A-A' and Cross-Section B-B'.

Section v. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable site condition standard for the contaminant, a diagram identifying the release mechanisms, contaminant transport pathway, the human and ecological receptors located on, in, or under the Phase Two Property, receptor exposure points, and routes of exposure:

Not applicable, as no contaminants were identified in concentrations greater than the applicable SCS on, in, or under the Phase Two Property. Therefore, no routes of exposure are present.

Refer to Drawing 6.

Section vi. If a non-standard delineation was conducted in accordance with Section 7.1 of Schedule E as part of preparing the Phase Two ESA:

A non-standard delineation was not conducted as part of this Phase Two ESA

Section vii. If the exemption set out in paragraph 1 or 2 of Section 49.1 is being relied upon:

The exemption set out in paragraph 1 of Section 49.1 of Ontario Regulation 153/04 is being relied upon as part of this Phase Two ESA as road salt for de-icing operations likely occurred during winter months. Therefore, the exemption applies to the Phase Two Property and no further investigation and/or remediation is required.

The exemption set out in paragraph 2 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Section viii. If the exemption set out in paragraph 3 of Section 49.1 is being relied upon:

The exemption set out in paragraph 3 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Summary of Remedial Activities:

Results of the Phase Two ESA revealed that all soil and ground water samples collected and analyzed for the COPCs were below the applicable Table 3 SCS. Remedial activities were not required at the Phase Two Property.

6. Conclusions

In comparison with the (2011) Ontario Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the EPA criteria, the results of the laboratory analyses revealed no exceedances in the soil or ground water within the Phase Two Property in comparison to the Table 3 SCS for industrial/commercial/community (ICC) property uses with fine-medium textured soils in a non-potable ground water condition.

As the soil and ground water analytical results did not exceed the Table 3 SCS on the Phase Two Property, remedial activities are not required.

6.1 Limitations

This report was prepared by Palmer for the account of Firearms Outlets Canada in accordance with the professional services agreement.

The conclusions and recommendations detailed in this report are based upon the information available at the time of preparation of the report. No investigative method eliminates the possibility of obtaining imprecise or incomplete information. Professional judgement was exercised in gathering and analyzing the information obtained and in the formulation of our conclusions and recommendations.

The nature of the sampling works makes it possible that contrary conditions may be identified in locations which were not sampled. However, it does suggest that the conditions will be localized and not extensive. The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations made during drilling and therefore should not be interpreted as exact planes of geological change.

The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects Palmer's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Palmer accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

Unless stated otherwise in this report, provided that the report is still reliable, and less than 18 months old, Palmer may issue a third-party reliance letter to parties, client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on Palmer's report, by such reliance agree to be bound by our proposal and Palmer's standard reliance letter. Palmer's standard reliance letter indicates that in no event shall Palmer be liable for any damages, howsoever arising, relating to third-party reliance on Palmer's report. No reliance by any party is permitted without such agreement. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Palmer.

The original of the technology-based document sent herewith has been authenticated and will be retained by Palmer for a minimum of five years. Since the file transmitted is now out of Palmer's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

6.2 Signatures and Certification

This report was prepared by Sasha Grabovskyy, B.ES who is currently an Environmental Scientist with Palmer. He has experience in conducting Phase One and Two ESAs at various land use types, in accordance with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 environmental protocols.

This report was prepared by Sylvia Babiarz, M.Eng,Sc, who is an Environmental Scientist with Palmer and has experience in conducting Phase One and Two ESAs at various land use types, in accordance with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 environmental protocols.

The report was reviewed by Kalina Naydenova, M.Sc., who is an Environmental Scientist with Palmer. She has over fourteen years' experience conducting numerous Phase One and Two ESAs at various land use types, conducting soil and ground water sampling procedures in accordance with ASTM 1527-13 and ASTM E1903-19, as well as experience with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 and Z769-00 environmental protocols.

This report was reviewed by Sarah Vlantis, B.Sc., P.Geo (limited), QP_{ESA}, Principal Environmental Scientist and Environment and Construction Team Lead in of Palmer. She has over 14 years' experience conducting Phase One and Two ESAs, soil and ground water sampling, and site remediation in accordance with Ontario Regulation 153/04 and 511/09, the CSA Z768-01 and Z769-00 environmental protocols, the Consulting Engineers of Ontario's Generally Accepted Standards for Environmental Investigations, and the Canadian Mortgage and Housing Corporation (CMHC) environmental site investigation procedures for mortgage loan insurance. The aforementioned ESAs have covered all land use types across Canada. Sarah also has numerous years of experience in preparing and filing Record of Site Conditions (RSCs) with the MECP. Sarah also has experience conducting Excess Soil Reuse Planning assessments and soil management in accordance with Ontario Regulation 406/19. Sarah is a Professional Geoscientist (P.Geo. (limited)) and is a Qualified Person (QP) under O. Reg. 153/04.

Pr	nn	o r	\sim d	

Sasha Grabovskyy, B.ES Environmental Scientist

Sylvia Babiarz, M.Env,Sc Environmental Scientist

Reviewed By:

Kalina Naydenova, M.Sc Environmental Scientist

Sllantes

Sarah Vlantis, B.Sc, P.Geo (limited), QP_{ESA} Principal, Environment & Construction Team Lead

7. References

- Atlas of Canada, Topographic Maps;
 - o http://atlas.nrcan.gc.ca/Site/english/toporama/index.html
- Chapman and Putnam, The Physiography of Southern Ontario, 1984;
- Phase One ESA, 725 Westney Road South, Ajax, Ontario, 2023;
- Google Earth, 2022;
- IAO Inspection Report, 725 Westney Road South, Ajax, Ontario, 1997, 2006
- Ministry of the Environment, Conservation and Parks (MOECP) Brownfields Environmental Site Registry;
- Ontario Ministry of the Environment, Conservation and Parks (MECP);
- Radon Potential Map Ontario, Radon Environmental, 2013;
- Region of Durham Interactive Maps, 2023;
- Source Protection Information Atlas, 2020;
- Technical Standards & Safety Authority;
- The Ontario Geological Survey, 1990; and,
- The Ontario Geological Survey, 2003.

8. Tables and Figures

8.1 Tables

8.1.1 Monitoring Well Installation

Monitoring Well ID	Ground Surface Elevation (mAMSL)	Monitoring Well Construction Details	Associated Elevations Below Grade (m)
NAVA (00 4	00.00	50-mm PVC solid riser pipe	0.0 – 4.52
MW23-1	92.38	50-mm PVC slotted intake screen	4.52 – 7.57
1.41.41.00 O	00.47	50-mm PVC solid riser pipe	0.0 – 6.14
MW23-2	92.17	50-mm PVC slotted intake screen	6.14 – 9.19
1.41.41.00 O	91.53	50-mm PVC solid riser pipe	0.0 – 6.13
MW23-3		50-mm PVC slotted intake screen	6.13 – 9.18
1.00.4	91.18	50-mm PVC solid riser pipe	0.0 – 4.57
MW23-4		50-mm PVC slotted intake screen	4.57 – 7.62
141400 F	00.55	50-mm PVC solid riser pipe	0.0 – 4.57
MW23-5	92.55	50-mm PVC slotted intake screen	4.57 – 7.62
1.00.0	92.54	50-mm PVC solid riser pipe	0.0 – 5.53
MW23-6		50-mm PVC slotted intake screen	5.53 – 8.58
1 AVA (00 7	00.40	50-mm PVC solid riser pipe	0.0 – 5.57
MW23-7	92.40	50-mm PVC slotted intake screen	5.57 – 8.62

8.1.2 Water Levels

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)
MW23-1	12/14/23	92.38	5.94	86.44
MW23-2	12/14/23	92.17	8.27	83.90
MW23-3	12/14/23	91.53	7.73	83.80
MW23-4	12/14/23	91.18	6.12	85.06
MW23-5	12/14/23	92.55	6.10	86.45
MW23-6	12/14/23	92.54	8.39	84.15
MW23-7	12/14/23	92.40	-	<u>-</u>

8.1.3 LNAPLs and DNAPLs

No light or dense non-aqueous phase liquid measurements were detected at the Phase Two Property, as discussed in *Sections 4.7, 5.2*, and *5.7*.

8.1.4 Soil Data

8.1.4.1 PHCs with BTEX

Soil Analytical R	esults: Petroleum Hy	drocarbons (PHCs)	and Benzene, Toli	uene, Et	hylbenz	ene, Xy	lenes (B	TEX)				
						PHCs				B	ΓEX	
				F1 (C6-C10)	F1 (C6-C10) - BTEX*	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 ne Textured Soil, No			65	65	250	2500	6600	0.4	78	19	30
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date									
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	69	<50	< 0.005	<0.05	<0.015	<0.05
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	58	<50	<0.005	<0.05	<0.015	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05

- 1. --- In guideline row(s) denotes no criteria for that parameter
- 2. --- In data row(s) denotes parameter not analyzed
- 3. mbgs Denotes metres below ground surface
- 4. **BOLD** Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils
- * F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

8.1.4.2 VOCs

Soil Analytical	Results: Volatile Organ	nic Compounds (V	OCs)																																							
																							VOCs																			
				Acetone	Вепzene	Bromodichloromethane	Вготобот	Bromomethane	Carbon Tetrachloride	Chlorobenzane	Chloroform	Dibromochloromethane	1,2-Dichlorobenzane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene (cis) + (trans)	Ethylberzene	Ethylene Dibromide	Hexane (n)	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	Methyl tert-Butyl Ether (MTBE)	Methylene Chloride	Stymne	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	Vinyl Chloride	Xylenes, Total (Xylene Mixture)	1,4-Dioxane
				µg/g	μg/g	μg/g	μg/g	μg/g	µg/g	μg/g	μg/g	μg/g	μg/g	µg/g	μg/g	µg/g	μg/g	µg/g	µg/g	μg/g	µg/g	μg/g	µg/g	μg/g	μg/g	μg/g	µg/g	µg/g	µg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	µg/g	μg/g	μg/g	μg/g	μg/g	µg/g	μg/g
O.Reg. 153/04 Medium-Fine T	MOECC Guideline (20 extured Soil, Non-Pota	011), Ind/Com/Com able Ground Water	mu Property Use, Condition	28	0.4	18	1.7	0.05	1.5	2.7	0.18	13	8.5	12	0.84	25	21	0.05	0.48	37	9.3	0.68	0.21	19	0.05	88	88	210	3.2	2	43	0.11	0.094	21	78	12	0.11	0.61	5.8	0.25	30	1.8
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																																							
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.015	<0.05	<0.05	<0.50	<0.50	<0.04	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.02	<0.05	-
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.50	<0.005	<0.05	_	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05				<0.05	<0.50	<0.50	<0.04			<0.05	-			<0.05				<0.02	<0.05	-
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.50		<0.05	_	_	_	_	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05				<0.015		<0.05	<0.50	<0.50				<0.05						_	$\overline{}$		<0.05	-
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.50	_	<0.05	<0.05	_	_	_	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05							<0.50	<0.50		_	_	<0.05	-			<0.05				<0.02		-
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<0.50	_	_	<0.05		_	_	_		<0.05	<0.05	<0.05				<0.05	<0.05			<0.05				_	<0.50		$\overline{}$	_	<0.05			<0.05					<0.02	_	-
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.015	<0.05	<0.05	<0.50	<0.50	<0.04	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.02	<0.05	-

- 1. --- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils

8.1.4.3 Metals

Soil Analytical Re	esults: Metals																						
														Metals									
				Antimony	Arsenic	Barium	Beryllium	Boron (total)	Boron (Hot Water Soluble)*	Cadmium	Chromium Total	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc
_	IOECC Guideline (20 ktured Soil, Non-Pota	**	* *	μg/g 50	μg/g 18	μg/g 670	μg/g 10	μg/g 120	μg/g 2	μg/g 1.9	μg/g 160	μg/g 100	μg/g 300	μg/g 120	μg/g 40	μg/g 340	μg/g 5.5	μg/g 50	μg/g 	μg/g 3.3	μg/g 33	μg/g 86	μg/g 340
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																				
BH23-1	23-1-4	2.29 - 3.05	28-Nov-23	<0.10	2.38	41.1	0.32	5.4	-	0.069	11.9	5.62	10.5	6.03	0.5	12.5	<0.20	<0.10	-	0.165	0.488	20.4	26.2
BH23-2	23-2-4	2.29 - 3.05	28-Nov-23	<0.10	2.44	44.1	0.29	<5.0	-	0.067	11.7	6.96	12	6.48	0.49	13.7	<0.20	<0.10	-	0.163	0.48	20.1	26.7
BH23-2	23-2-4D	2.29 - 3.05	28-Nov-23	<0.10	2.62	48	0.29	5.1	-	0.071	13.2	7.7	11.9	6.62	0.55	16.2	<0.20	<0.10	-	0.2	0.523	22.3	28
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.10	2.19	61	0.29	6	-	0.085	12.2	5.39	9.76	5.52	0.32	11.5	<0.20	<0.10	-	0.132	0.485	22.5	27.9
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.10	2.63	60.1	0.3	6.6	-	0.078	12	7.07	10	6.63	0.53	16	<0.20	<0.10	-	0.178	0.589	22.1	28.5
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<0.10	2.89	76.4	0.33	6.7	-	0.08	14	8.41	11.8	9.09	0.82	19.9	<0.20	<0.10	-	0.265	0.572	22.6	27.7

- 1. -- In guideline row(s) denotes no criteria for that parameter
- 2. --- In data row(s) denotes parameter not analyzed
- 3. mbgs Denotes metres below ground surface
- 4. **BOLD** Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Community Property Use with Medium-Fine Textured Soils
- 6. * Denotes the boron standards are for hot water soluble extract for all surface soils. For subsurface soils the standards are for total boron (mixed strong acid digest), as ecological criteria are not considered

8.1.4.4 PAHs

Soil Analytical R	Results: Polycyclic Ar	omatic Hydrocarbo	ons (PAHs)																	
												PAHs								
				Methylnaphthalenes, 2-(1-)***	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	. Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	. Phenanthrene	Pyrene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 ine Textured Soil, No:			85	96	0.17	0.74	0.96	0.3	0.96	9.6	0.96	9.6	0.1	9.6	69	0.95	28	16	96
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																	
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4D	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

- 1. --- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- 5. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils
- 6. *** The methyl naphthalenes standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene with the provision that if both are detected the sum of the two must not exceed the standard

8.1.4.5 OC Pesticides

Soil Analytical R	Results: Organochlorin	ne (OC) Pesticides																
										OC	Pesticio	les						
				ල් DDD (Total)	m DDE (Total)	m DDT (Total)	eo oo Aldrin	ന്ത് അ Chlordane	% Dieldrin	ğα Endosulfan (Total)	ന്ത് അ	Heptachlor	দু জু	Hexachlorobenzene	να σα Hexachlorobutadiene	κα σα Hexachloroethane	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	Te Methoxychlor
_	MOECC Guideline (20 ine Textured Soil, No	* * * * * * * * * * * * * * * * * * *	• •	4.6	0.65	1.4	0.11	0.05	0.11	0.38	0.04	0.19	0.05	0.66	0.095	0.43	0.063	1.6
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date															
BH23-2	23-2-2	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-2	23-2-2D	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02

- 1. --- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils

8.1.5 Ground Water Data

8.1.5.1 PHCs with BTEX

Ground Water A	analytical Results: Pe	troleum Hydrocarbo	ns (PH	Cs) and	Benzen	e, Tolue	ene, Eth	ylbenzen	ie, Xyler	es (BTE	(X)
					PHCs				BT	EX	
			F1 (C6-C10)	F1-BTEX	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Вепzепе	Toluene	Ethylbenzene	Xylenes (Total)
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Property Use, N	MECP Guideline (201 Medium-Fine Texture Water Condition		750	750	150	500	500	430	18000	2300	4200
Sample Location	Sample ID	Sample Date									
MW23-1	23-1	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-2	23-2	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-3	23-3	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-4	23-4	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-5	23-5	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-5	23-5D	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-6	23-6	14-Dec-23	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50

Notes:

- In guideline row(s) denotes no criteria for that parameter
- 2. In data row(s) denotes parameter not analyzed
- mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils
- 6. *

 $F1\ fraction\ does\ not\ include\ BTEX;\ however,\ the\ proponent\ has\ the\ choice\ as\ to\ whether\ or\ not\ to\ subtract\ BTEX\ from\ the\ analytical\ result$

8.1.5.2 VOCs

Ground Water	Analytical Results: Vol	atile Organic Comp	ounds (V	OCs)																																								1
																								VOCs																				
			Acetone	Веплепе	Bromodichloromethane	Вготоботт	Bromomethane	Carbon tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroform	1,2-Dibromoethane	1,2-Dichlorobenzane	1,3-Dichlorobenzene	1,4-Dichlorobenzane	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene	Methylene Chloride	1,2-Dichloropropane	cis-1,3-Dichloropropylene	trans-1,3-Dichloropropylene	1,3-Dichloropropylene (cis & trans)	Ethylbenzene	n-Hexane	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	MTBE	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	o-Xylene	m+p-Xylenes	Xylenes (Total)
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
Property Use, 1	MECP Guideline (2011 Medium-Fine Textured Water Condition		130000	430	85000	770	56	8.4	630	82000	22	0.83	9600	9600	67	4400	3100	12	17	17	17	5500	140	-	,	45	2300	520	1500000	580000	1400	9100	28	15	17	18000	6700	30	17	2500	1.7	4200	7300000	
Sample Location	Sample ID	Sample Date																																										
MW23-1	23-1	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.30	<0.40	<0.50
MW23-2	23-2	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.30	<0.40	<0.50
MW23-3	23-3	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.30	<0.40	<0.50
MW23-4	23-4	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.30	<0.40	<0.50
MW23-5	23-5	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.30	<0.40	< 0.50
MW23-5	23-5D	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.30	<0.40	<0.50
MW23-6	23-6	14-Dec-23													< 0.50						<0.50						<0.50			<20													<0.40	
-	TRIPBLANK	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	< 0.50	<0.50	<0.20	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	-	<0.50	<0.30	< 0.30	< 0.50	<0.50	<0.50	<20	<20	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.30	<0.40	< 0.50

- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils

8.1.5.3 Metals

Ground Water A	nalytical Results: Me	etals																			
	,											Metals									
			Antimony (Sb)-Dissolved	Arsenic (As)-Dissolved	Barium (Ba)-Dissolved	Beryllium (Be)-Dissolved	Boron (B)-Dissolved	Cadmium (Cd)-Dissolved	Chromium (Cr)-Dissolved	Cobalt (Co)-Dissolved	Copper (Cu)-Dissolved	Lead (Pb)-Dissolved	Molybdenum (Mo)-Dissolved	Nickel (Ni)-Dissolved	Selenium (Se)-Dissolved	Silver (Ag)-Dissolved	Sodium (Na)-Dissolved	Thallium (Tl)-Dissolved	Uranium (U)-Dissolved	Vanadium (V)-Dissolved	Zinc (Zn)-Dissolved
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	IECP Guideline (201 fedium-Fine Textured Water Condition		20000	1900	29000	67	45000	2.7	810	66	87	25	9200	490	63	1.5	2300000	510	420	250	1100
Sample Location	Sample ID	Sample Date																			
MW23-1	23-1	14-Dec-23	<1.0	<1.0	332	<0.2	109	0.338	<5.0	23.2	2.61	<0.5	12.5	19	2.74	<0.1	316000	0.12	8.18	<5.0	11.2
MW23-2	23-2	14-Dec-23	1.24	0.68	171	<0.02	160	0.122	<0.5	18.5	3.6	0.055	18.8	11.5	2.66	<0.01	119000	0.06	4.25	0.82	20.7
MW23-3	23-3	14-Dec-23	1.14	0.53	205	< 0.02	135	0.0477	<0.5	7.04	1.88	<0.05	18.8	6.62	2.3	<0.01	262000	0.05	4.64	0.91	8.1
MW23-4	23-4	14-Dec-23	1.45	1.04	174	<0.02	180	0.0112	<0.5	0.4	3.53	<0.05	15	0.87	0.88	< 0.01	23000	0.03	2.37	1.5	13.1
MW23-5	23-5	14-Dec-23	<0.1	0.63	293	<0.02	71	0.0069	<0.5	1.3	0.39	<0.05	0.373	1.14	0.06	< 0.01	26000	<0.01	0.47	0.6	2.7
MW23-5	23-5D	14-Dec-23	<0.1	0.67	295	<0.02	76	0.0073	<0.5	1.35	0.4	<0.05	0.362	1.45	0.05	<0.01	25900	<0.01	_	0.6	2.8
MW23-6	23-6	14-Dec-23	<1.0	<1.0	228	<0.2	233	0.189	<5.0	21.6	2.5	<0.5	4.51	36.4	0.94	<0.1	344000	0.15	13.8	<5.0	15.4

- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- 3. mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils

8.1.5.4 PAHs

Ground Water A	analytical Results: Po	lycyclic Aromatic H	Iydrocarbo	ns (PAF	Is)																
												PAHs									
			ন Acenaphthene	न न Acenaphthylene	π P Anthracene	ந் நிகாzo(a)anthracene	т Вепzо(а)ругепе	Benzo(b)fluoranthene	Benzo(g.h.i)perylene	ந் Benzo(k)fluoranthene	T Chrysene	Dibenzo(a,h)anthracene	전 Fluoranthene	T Fluorene	ndeno(1,2,3-cd)pyrene	्व 1+2-Methylnaphthalenes*	ल्ह 1-Methylnaphthalene	ह्व 2-Methylnaphthalene	전 Naphthalene	Phenanthrene	ы Бугене
	MECP Guideline (201 Medium-Fine Textured Water Condition		1700	1.8	2.4	4.7	0.81	0.75	0.2	0.4	1	0.52	130	400	0.2	1800	1800	1800	6400	580	68
Sample Location	Sample ID	Sample Date																			
MW23-2	23-2	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01	< 0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	< 0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-3	23-3	14-Dec-23	< 0.016	<0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01	< 0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	< 0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-3	23-3D	14-Dec-23	< 0.016	<0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01	<0.01	< 0.01	<0.005	< 0.01	< 0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-4	23-4	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01	<0.01		<0.005	<0.01	< 0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-5	23-5	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	<0.01	<0.01	<0.01	<0.01	<0.005	<0.01	< 0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-6	23-6	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	<0.01	< 0.01	< 0.01	<0.005	< 0.01	< 0.01	<0.01	<0.015	< 0.01	<0.01	<0.05	<0.02	<0.01

- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- 3. mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils
- The methyl naphthalenes standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene with the provision that if both are detected the sum of the two must not exceed the standard

8.1.5.5 OC Pesticides

Ground Water A	nalytical Results: Or	ganochlorine (OC) I	Pesticides														
									0	C Pestic	ides						
			를 DDD (Total)	트 DDE (Total)	편 DDT (Total)	Taldrin	टीordane	न्तु Dieldrin	를 Endosulfan (Total)	ra Padrin	र्वे Heptachlor	र्के Heptachlor Epoxide	Hexachlorobenzene	ন Hexachlorobutacliene	म् नि Hexachloroethane	Hexachlorocyclohexane Gamma [Eq. 1. Hexachlorocyclohexane Gamma HC]	ন Methoxychlor
	MECP Guideline (201 Medium-Fine Textured Water Condition		45	20	2.8	8.5	28	0.75	1.5	0.48	2.5	0.048	3.1	4.5	200	1.2	6.5
Sample Location	Sample ID	Sample Date															
MW23-2	23-2	14-Dec-23	< 0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	< 0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-3	23-3	14-Dec-23	< 0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	<0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	< 0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4D	14-Dec-23	< 0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	< 0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008

- In guideline row(s) denotes no criteria for that parameter
- In data row(s) denotes parameter not analyzed
- 4. BOLD Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils

8.1.6 Sediment Data

Sediment sampling was not part of this investigation, as a water body is not on the Phase Two Property.

8.1.7 Soil and Ground Water Maximum Concentration Data

8.1.7.1 Soil Maximum Concentration Data

Parameter	MECP Table 3 ICC SCS (µg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
VOCs - BTEX				
Benzene	0.4	<0.005	All Boreholes	0.0 – 5.33
Ethylbenzene	19	<0.015	All Boreholes	0.0 – 5.33
Toluene	78	<0.05	All Boreholes	0.0 – 5.33
Xylene Mixture	30	<0.05	All Boreholes	0.0 – 5.33
Metals				
Barium	670	76.4	BH23-5	1.52 – 2.29
Beryllium	10	0.33	BH23-5	1.52 – 2.29
Boron (total)	120	6.7	BH23-5	1.52 – 2.29
Cadmium	1.9	0.085	BH23-3	2.29 – 3.05
Chromium Total	160	14	BH23-5	1.52 – 2.29
Cobalt	100	8.41	BH23-5	1.52 – 2.29
Copper	300	12	BH23-2	2.29 – 3.05
Lead	120	9.09	BH23-5	1.52 – 2.29
Molybdenum	40	0.82	BH23-5	1.52 – 2.29
Nickel	340	19.9	BH23-5	1.52 – 2.29
Silver	50	<0.10	All Boreholes	1.52 – 6.86
Thallium	3.3	0.265	BH23-5	1.52 – 2.29
Uranium	33	0.589	BH23-4	2.29 – 3.05
Vanadium	86	22.6	BH23-5	1.52 – 2.29
Zinc	340	28.5	BH23-4	2.29 – 3.05
Metals – Hydride Forming				
Antimony	50	<0.10	All Boreholes	1.52 – 6.86
Arsenic	18	2.89	BH23-5	1.52 – 2.29
Selenium	5.5	<0.20	All Boreholes	1.52 – 6.86
OC Pesticides				
Aldrin	0.11	<0.02	BH23-2 – BH23-4	0.76 – 3.05
Chlordane	0.05	<0.03	BH23-2 – BH23-4	0.76 – 3.05
DDD	4.6	<0.03	BH23-2 – BH23-4	0.76 – 3.05
DDE	0.65	<0.03	BH23-2 – BH23-4	0.76 – 3.05

Parameter	MECP Table 3 ICC SCS (µg/g)	Maximum Soil Concentration (µg/g)	Location of Maximum Concentration	Sample Depth (m)
DDT	1.4	<0.03	BH23-2 – BH23-4	0.76 – 3.05
Dieldrin	0.11	<0.02	BH23-2 – BH23-4	0.76 – 3.05
Endosulfan	0.38	<0.03	BH23-2 – BH23-4	0.76 – 3.05
Endrin	0.04	<0.02	BH23-2 – BH23-4	0.76 – 3.05
Heptachlor	0.19	<0.02	BH23-2 – BH23-4	0.76 – 3.05
Heptachlor Epoxide	0.05	<0.02	BH23-2 – BH23-4	0.76 – 3.05
Hexachlorobenzene	0.66	<0.01	BH23-2 – BH23-4	0.76 – 3.05
Hexachlorobutadiene	0.095	<0.01	BH23-2 – BH23-4	0.76 – 3.05
Hexachlorocyclohexane Gamma-	0.063	<0.01	BH23-2 – BH23-4	0.76 – 3.05
Hexachloroethane	0.43	<0.01	BH23-2 – BH23-4	0.76 – 3.05
Methoxychlor	1.6	<0.02	BH23-2 – BH23-4	0.76 – 3.05
PAHs				
Acenaphthene	96	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Acenaphthylene	0.17	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Anthracene	0.74	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Benz(a)anthracene	0.96	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Benzo(a)pyrene	0.3	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Benzo(b)fluoranthene	0.96	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Benzo(g,h,i)perylene	9.6	<0.05	BH23-2 – BH23-4	0.0 - 5.33
Benzo(k)fluoranthene	0.96	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Chrysene	9.6	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Dibenzo(a,h)anthracene	0.1	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Fluoranthene	9.6	<0.05	BH23-2 – BH23-4	0.0 - 5.33
Fluorene	69	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Indeno(1,2,3-cd)pyrene	0.95	<0.05	BH23-2 – BH23-4	0.0 - 5.33
Methlynaphthalene, 2-(1-)	85	<0.05	BH23-2 – BH23-4	0.0 - 5.33
Naphthalene	28	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Phenanthrene	16	<0.05	BH23-2 – BH23-4	0.0 – 5.33
Pyrene	96	<0.05	BH23-2 – BH23-4	0.0 – 5.33
PHCs				
Petroleum Hydrocarbons F1	65	<5.0	All Boreholes	0.0 – 5.33
Petroleum Hydrocarbons F2	250	19	BH23-1 & BH 23-3	4.57 – 5.33
Petroleum Hydrocarbons F3	2500	69	BH23-1	4.57 – 5.33

	MECP Table 3	Maximum Soil	Location of		
Parameter	ICC SCS	Concentration	Maximum	Sample	
	(µg/g)	(µg/g)	Concentration	Depth (m)	
Petroleum Hydrocarbons F4	6600	<50	-	-	
VOCs – Trihalomethanes					
Bromodichloromethane	18	<0.05	All Boreholes	0.0 – 5.33	
Bromoform	1.7	<0.05	All Boreholes	0.0 – 5.33	
Dibromochloromethane	13	<0.05	All Boreholes	0.0 – 5.33	
VOCs					
Acetone	28	<0.50	All Boreholes	0.0 – 5.33	
Bromomethane	0.05	<0.05	All Boreholes	0.0 – 5.33	
Carbon Tetrachloride	1.5	<0.05	All Boreholes	0.0 – 5.33	
Chlorobenzene	2.7	<0.05	All Boreholes	0.0 – 5.33	
Chloroform	0.18	<0.05	All Boreholes	0.0 – 5.33	
Dichlorobenzene, 1,2-	8.5	<0.05	All Boreholes	0.0 – 5.33	
Dichlorobenzene, 1,3-	12	<0.05	All Boreholes	0.0 – 5.33	
Dichlorobenzene, 1,4-	0.84	<0.05	All Boreholes	0.0 – 5.33	
Dichlorodifluoromethane	25	<0.05	All Boreholes	0.0 – 5.33	
Dichloroethane, 1,1-	21	<0.05	All Boreholes	0.0 – 5.33	
Dichloroethane, 1,2-	0.05	<0.05	All Boreholes	0.0 – 5.33	
Dichloroethylene, 1,1-	0.48	<0.05	All Boreholes	0.0 – 5.33	
Dichloroethylene , 1,2-cis-	37	<0.05	All Boreholes	0.0 – 5.33	
Dichloroethylene, 1,2-trans-	9.3	<0.05	All Boreholes	0.0 – 5.33	
Dichloropropane, 1,2-	0.68	<0.05	All Boreholes	0.0 – 5.33	
Dichloropropene, 1,3-	0.21	<0.05	All Boreholes	0.0 – 5.33	
Ethylene Dibromide	0.05	<0.05	All Boreholes	0.0 – 5.33	
Hexane (n)	88	<0.05	All Boreholes	0.0 – 5.33	
Methyl Ethyl Ketone	88	<0.50	All Boreholes	0.0 – 5.33	
Methyl Isobutyl Ketone	210	<0.50	All Boreholes	0.0 – 5.33	
Methyl tert-Butyl Ether (MTBE)	3.2	<0.04	All Boreholes	0.0 – 5.33	
Methylene Chloride	2	<0.05	All Boreholes	0.0 – 5.33	
Styrene	43	<0.05	All Boreholes	0.0 – 5.33	
Tetrachloroethane, 1,1,1,2-	0.11	<0.05	All Boreholes	0.0 – 5.33	
Tetrachloroethane, 1,1,2,2-	0.094	<0.05	All Boreholes	0.0 – 5.33	
Tetrachloroethylene	21	<0.05	All Boreholes	0.0 – 5.33	
Trichloroethane, 1,1,1-	12	<0.05	All Boreholes	0.0 – 5.33	

Parameter	MECP Table 3 ICC SCS (µg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
Trichloroethane, 1,1,2-	0.11	<0.05	All Boreholes	0.0 - 5.33
Trichloroethylene	0.61	<0.01	All Boreholes	0.0 - 5.33
Trichlorofluoromethane	5.8	<0.05	All Boreholes	0.0 – 5.33
Vinyl Chloride	0.25	<0.02	All Boreholes	0.0 – 5.33

- 1. ND represents Non-Detect.
- 2. Bold entries exceed the Criteria.
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Medium-Fine Textured Soils.

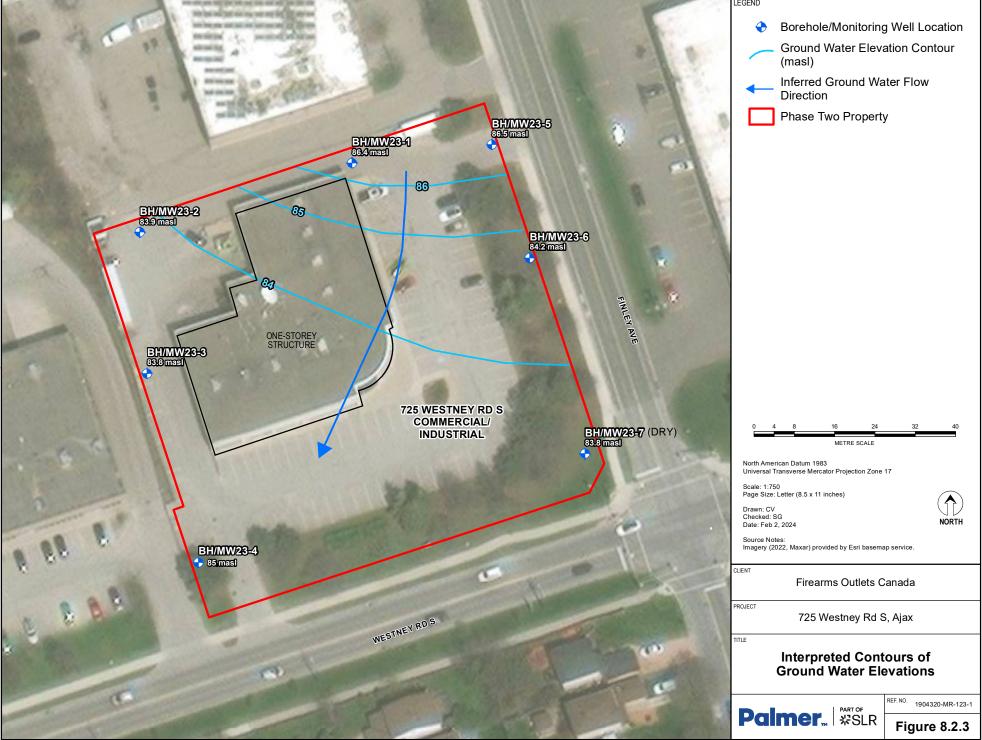
8.1.7.2 Ground Water Maximum Concentration Data

Parameter	MECP Table 3 RPIICC SCS (μg/L)	Maximum Ground Water Concentration (μg/L)	Location of Maximum Concentration	
VOCs - BTEX				
Benzene	430	<0.50	All MWs	
Ethylbenzene	2300	<0.50	All MWs	
Toluene	18000	<0.50	All MWs	
Xylene Mixture	4200	<0.50	All MWs	
Metals				
Barium	29000	332		
Beryllium	67	<0.2	MW23-1 & MW23-6	
Boron (total)	45000	233	MW23-6	
Cadmium	2.7	0.338	MW23-1	
Chromium Total	810	<5.0	MW23-1 & MW23-6	
Cobalt	66	23.2	MW23-1	
Copper	87	3.6	MW23-2	
Lead	25	<0.5	MW23-1 & MW23-6	
Molybdenum	9200	18.8	MW23-2 & MW23-3	
Nickel	490	36.4	MW23-6	
Silver	1.5	<0.1	MW23-1 & MW23-6	
Thallium	510	0.15	MW23-6	
Uranium	420	13.8	MW23-6	
Vanadium	250	<5.0	MW23-1 & MW23-6	
Zinc	1100	20.7	MW23-2	
Metals – Hydride Forming				
Antimony	20000	1.45	MW23-4	
Arsenic	1900	1.04	MW23-4	
Selenium	63	2.74	MW23-1	
Na Sodium				
Sodium	2300000	344000	MW23-6	
OC Pesticides				

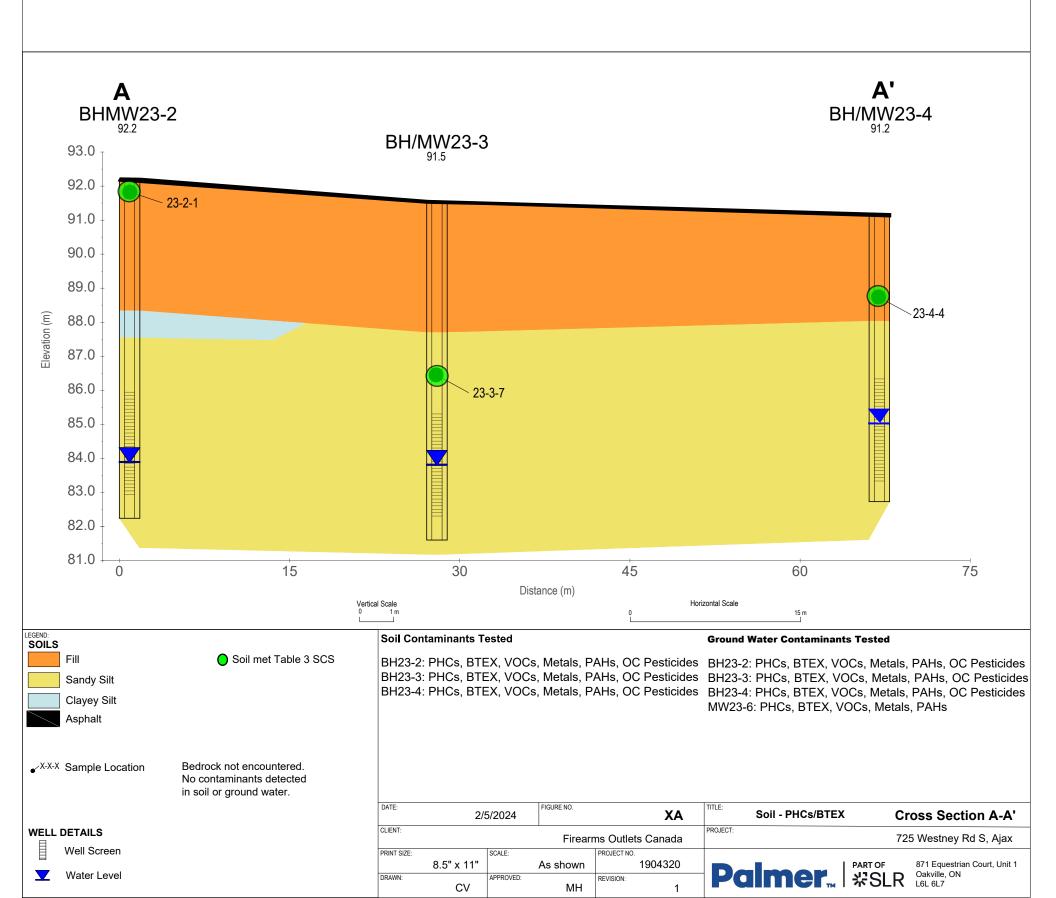
Parameter	MECP Table 3 RPIICC SCS (µg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration
Aldrin	8.5	<0.008	All MWs
Chlordane	28	<0.011	All MWs
DDD	45	<0.006	All MWs
DDE	20	<0.004	All MWs
DDT	2.8	<0.006	All MWs
Dieldrin	0.75	<0.008	All MWs
Endosulfan	1.5	<0.01	All MWs
Endrin	0.48	<0.01	All MWs
Heptachlor	2.5	<0.008	All MWs
Heptachlor Epoxide	0.048	<0.008	All MWs
Hexachlorobenzene	3.1	<0.008	All MWs
Hexachlorobutadiene	4.5	<0.008	All MWs
Hexachlorocyclohexane Gamma-	1.2	<0.008	All MWs
Hexachloroethane	200	<0.008	All MWs
Methoxychlor	6.5	<0.008	All MWs
PAHs			
Acenaphthene	1700	<0.016	All MWs
Acenaphthylene	1.8	<0.01	All MWs
Anthracene	2.4	<0.01	All MWs
Benz(a)anthracene	4.7	<0.01	All MWs
Benzo(a)pyrene	0.81	<0.005	All MWs
Benzo(b)fluoranthene	0.75	<0.01	All MWs
Benzo(g,h,i)perylene	0.2	<0.01	All MWs
Benzo(k)fluoranthene	0.4	<0.01	All MWs
Chrysene	1	<0.01	All MWs
Dibenzo(a,h)anthracene	0.52	<0.005	All MWs
Fluoranthene	130	<0.01	All MWs
Fluorene	400	<0.01	All MWs
Indeno(1,2,3-cd)pyrene	0.2	<0.01	All MWs
Methlynaphthalene, 2-(1-)	1800	<0.015	All MWs
Naphthalene	6400	<0.05	All MWs
Phenanthrene	580	<0.02	All MWs
Pyrene	68	<0.01	All MWs

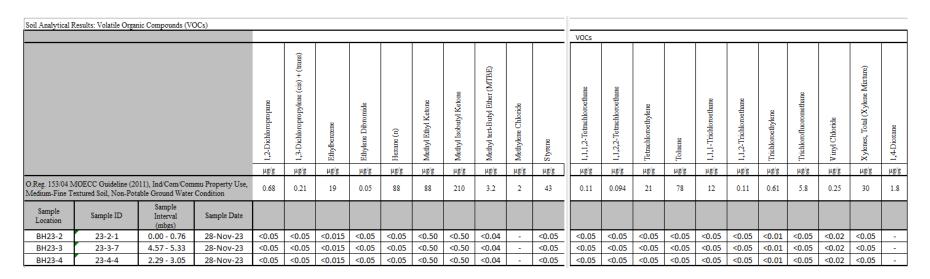


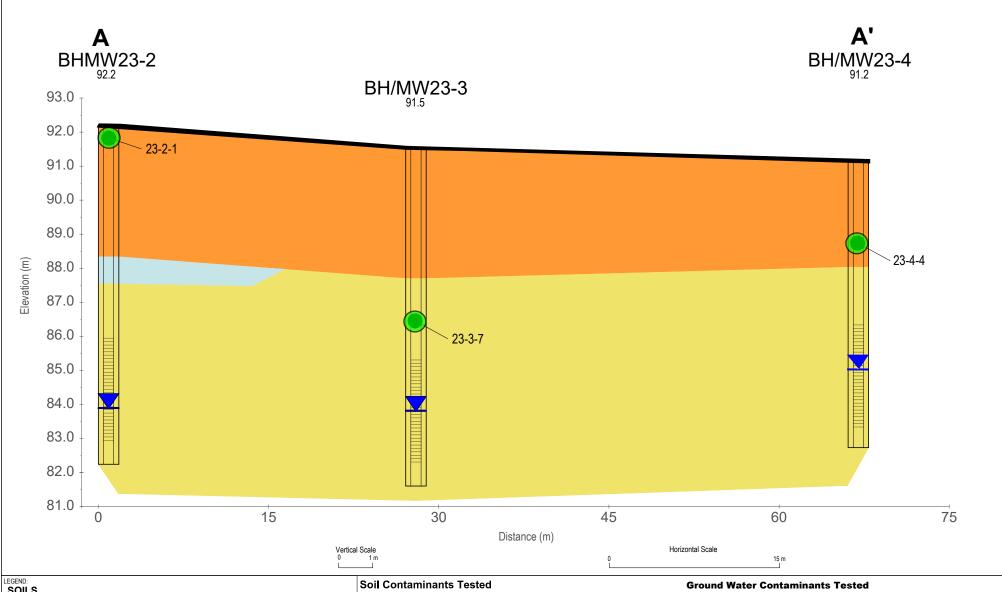

Parameter	MECP Table 3 RPIICC SCS (μg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration	
PHCs				
Petroleum Hydrocarbons F1	750	<25	All MWs	
Petroleum Hydrocarbons F2	150	<100	All MWs	
Petroleum Hydrocarbons F3	500	<250	All MWs	
Petroleum Hydrocarbons F4	500	<250	All MWs	
VOCs – Trihalomethanes				
Bromodichloromethane	85000	<0.50	All MWs	
Bromoform	770	<0.50	All MWs	
Dibromochloromethane	82000	<0.50	All MWs	
VOCs				
Acetone	130000	<20	All MWs	
Bromomethane	56	<0.50	All MWs	
Carbon Tetrachloride	8.4	<0.20	All MWs	
Chlorobenzene	630	<0.50	All MWs	
Chloroform	22	<0.50	All MWs	
Dichlorobenzene, 1,2-	9600	<0.50	All MWs	
Dichlorobenzene, 1,3-	9600	<0.50	All MWs	
Dichlorobenzene, 1,4-	67	<0.50	All MWs	
Dichlorodifluoromethane	4400	<0.50	All MWs	
Dichloroethane, 1,1-	3100	<0.50	All MWs	
Dichloroethane, 1,2-	12	<0.50	All MWs	
Dichloroethylene, 1,1-	17	<0.50	All MWs	
Dichloroethylene , 1,2-cis-	17	<0.30	All MWs	
Dichloroethylene, 1,2-trans-	17	<0.30	All MWs	
Dichloropropane, 1,2-	140	<0.50	All MWs	
Dichloropropene, 1,3-	140	<0.50	All MWs	
Ethylene Dibromide	0.83	<0.20	All MWs	
Hexane (n)	520	<0.50	All MWs	
Methyl Ethyl Ketone	1500000	<20	All MWs	
Methyl Isobutyl Ketone	580000	<20	All MWs	
Methyl tert-Butyl Ether (MTBE)	1400	<0.50	All MWs	
Styrene	9100	<0.50	All MWs	
Tetrachloroethane, 1,1,1,2-	28	<0.50	All MWs	

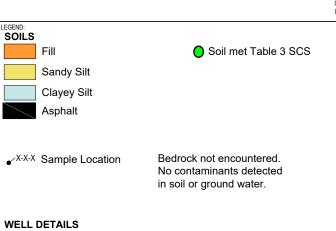


Parameter	MECP Table 3 RPIICC SCS (µg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration
Tetrachloroethane, 1,1,2,2-	15	<0.50	All MWs
Tetrachloroethylene	17	<0.50	All MWs
Trichloroethane, 1,1,1-	6700	<0.50	All MWs
Trichloroethane, 1,1,2-	30	<0.50	All MWs
Trichloroethylene	17	<0.50	All MWs
Trichlorofluoromethane	2500	<0.50	All MWs
Vinyl Chloride	1.7	<0.50	All MWs


- 1. ND represents Non-Detect.
- 2. Bold entries exceed the Criteria.
- 3. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Industrial/Commercial/Community Property Use with All-Textured Soils.





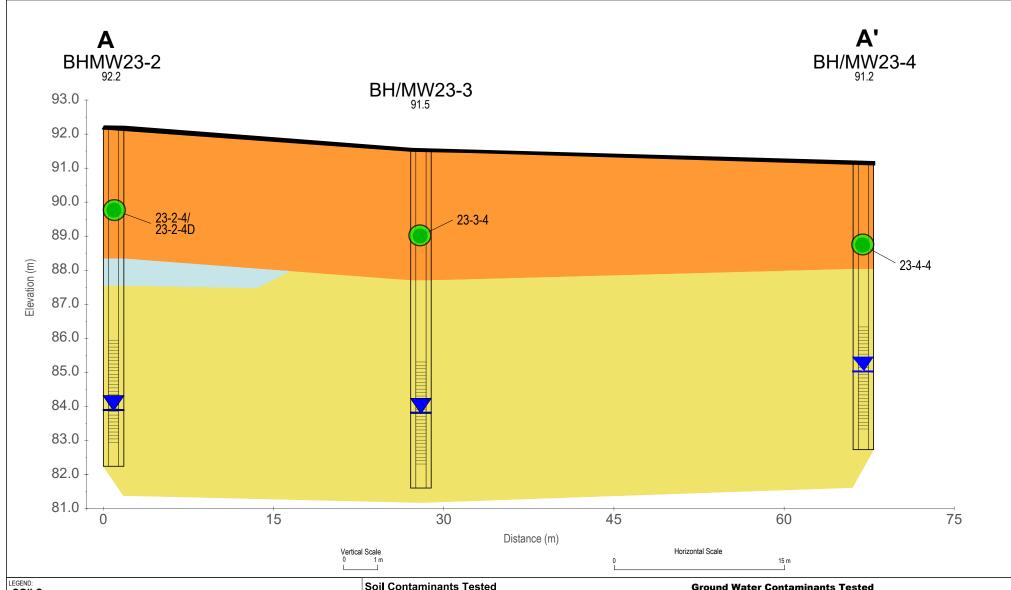

Soil Analytical R	tesults: Petroleum Hyd	drocarbons (PHCs)	and Benzene, Toli	iene, Et	hylbenze	ene, Xy	lenes (B	TEX)				
						PHCs				B1	EX	
				© F1 (C6-C10)	m F1 (C6-C10) - BTEX*	m F2 (C10-C16)	ක් F3 (C16-C34)	ந் F4 (C34-C50)	m Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)
	MOECC Guideline (20 ne Textured Soil, No			65	65	250	2500	6600	0.4	78	19	30
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date									
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	58	<50	<0.005	<0.05	<0.015	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05

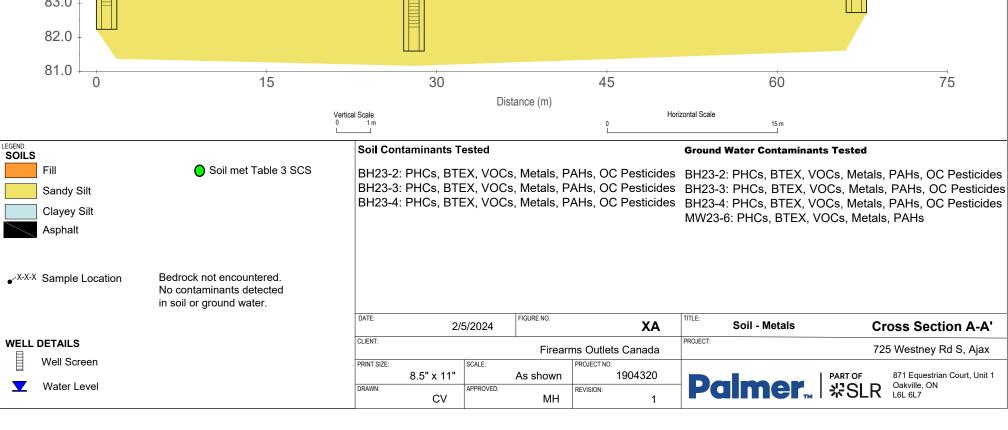
Soil Analytical R	Results: Volatile Organ	nic Compounds (VC	OCs)																		
												VO	Cs								
				ng Acetone	en Benzene	Bromodichloromethane	ர் நேறைவில் நா	Fig. Bromomethane	চ্ছি তেল Carbon Tetrachloride	Te Chlorobetzzne	riging Chloroform	Dibromochloromethane	1,2-Dichlorobenzane	1,3-Dichlorobenzane	1,4Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene
	MOECC Guideline (20 extured Soil, Non-Pot			28	0.4	18	1.7	0.05	1.5	2.7	0.18	13	8.5	12	0.84	25	21	0.05	0.48	37	9.3
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																		
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Well Screen

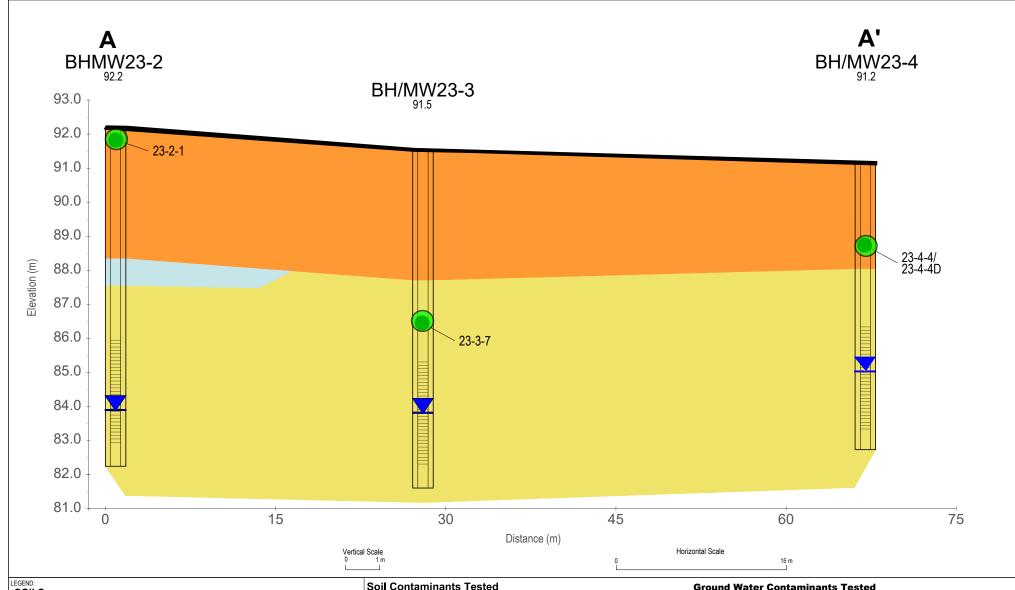
Water Level

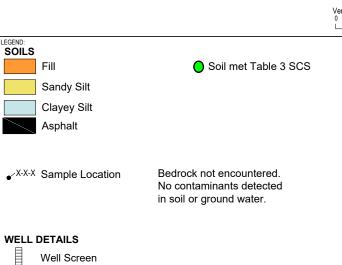
Soil Contaminants Tested


 MH


 CV

BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides MW23-6: PHCs, BTEX, VOCs, Metals, PAHs

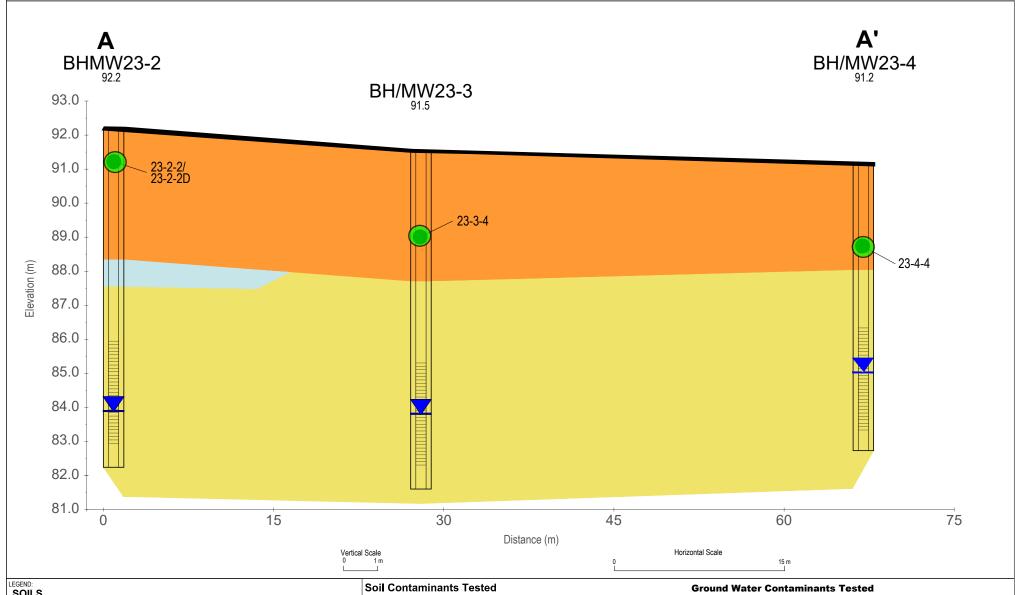

DATE:	2/5	5/2024	FIGURE NO.	XA	Soil - VOCs	Cı	ross Section A-A'
CLIENT:			Firear	ms Outlets Canada	PROJECT:	72	25 Westney Rd S, Ajax
PRINT SIZE:	8.5" x 11"	SCALE:	As shown	PROJECT NO. 1904320	Delmor	PART OF	871 Equestrian Court, Unit 1
DRAWN:	CV	APPROVED:	МН	REVISION:	Palmer,	浆SLR	Oakville, ON L6L 6L7

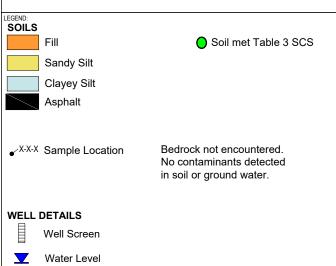

Soil Analytical F	oil Analytical Results: Metals																						
														Metals	;								
				Antimony	Arsenic	Barium	Beryllium	Boron (total)	Boron (Hot Water Soluble)*	Cadmium	Chromium Total	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 extured Soil, Non-Pot			50	18	670	10	120	2	1.9	160	100	300	120	40	340	5.5	50		3.3	33	86	340
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																				
BH23-2	23-2-4	2.29 - 3.05	28-Nov-23	<0.10	2.44	44.1	0.29	<5.0	-	0.067	11.7	6.96	12	6.48	0.49	13.7	<0.20	<0.10	-	0.163	0.48	20.1	26.7
BH23-2	23-2-4D	2.29 - 3.05	28-Nov-23	<0.10	2.62	48	0.29	5.1	-	0.071	13.2	7.7	11.9	6.62	0.55	16.2	<0.20	<0.10	-	0.2	0.523	22.3	28
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.10	2.19	61	0.29	6	-	0.085	12.2	5.39	9.76	5.52	0.32	11.5	<0.20	<0.10	-	0.132	0.485	22.5	27.9
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.10	2.63	60.1	0.3	6.6	-	0.078	12	7.07	10	6.63	0.53	16	<0.20	<0.10	-	0.178	0.589	22.1	28.5

Soil Analytical R	desults: Polycyclic Ar	omatic Hydrocarbo	ons (PAHs)																	
												PAH	ls							
				Methylnaphthalenes, 2-(1-)***	Acenaphthene	Acenaphthylene	Anthracene	B enzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 ne Textured Soil, No			85	96	0.17	0.74	0.96	0.3	0.96	9.6	0.96	9.6	0.1	9.6	69	0.95	28	16	96
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																	
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4D	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Water Level

Soil Contaminants Tested


BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides


Ground Water Contaminants Tested

BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides MW23-6: PHCs, BTEX, VOCs, Metals, PAHs

DATE:	2/	5/2024	FIGURE NO.	XA	Soil - PAHs	Cı	oss Section A-A'
CLIENT:			Firearr	ns Outlets Canada	PROJECT:	72	5 Westney Rd S, Ajax
PRINT SIZE:	8.5" x 11"	SCALE:	As shown	PROJECT NO. 1904320	Delmore	PART OF	871 Equestrian Court, Unit 1
DRAWN:	CV	APPROVED:	МН	REVISION:	Palmer _™	尜SLR	Oakville, ON L6L 6L7

Soil Analytical R	Results: Organochlorin	ne (OC) Pesticides																
										OC	Pesticio	des						
				(EDDD (Total)	φ DDE (Total)	re DDT (Total)	og Aldrin	ল Chlordane জ	ra og Dieldrin	र्षेत्र क्रि Endosulfan (Total)	or Endrin	re German Heptachlor	र्षे एव जिस्तियोग Epoxide	re de Hexachlorobenzene	re Ge Hexachlorobutadiene	re de Hexachloroethane	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	Technoxychior
	MOECC Guideline (20 ine Textured Soil, No			4.6	0.65	1.4	0.11	0.05	0.11	0.38	0.04	0.19	0.05	0.66	0.095	0.43	0.063	1.6
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date															
BH23-2	23-2-2	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.0
BH23-2	23-2-2D	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	< 0.01	<0.0
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.0
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.0

Soil Contaminants Tested

BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides

BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides MW23-6: PHCs, BTEX, VOCs, Metals, PAHs

DATE:	2/	5/2024	FIGURE NO.	XA	TITLE:	Soil - OC Pesticio	des	Cross Section A-A'
CLIENT:			Firearr	ns Outlets Canada	PROJECT:			725 Westney Rd S, Ajax
PRINT SIZE:	8.5" x 11"	SCALE:	As shown	PROJECT NO. 1904320	Da	-1	PART OF	871 Equestrian Court, Unit 1
DRAWN:	CV	APPROVED:	МН	REVISION:	PC	ilmer	尜SL	R Oakville, ON L6L 6L7

Ground Water A	analytical Results: Pet	roleum Hydrocarbo	μg/L μg/L										
					PHCs				BT	ΈX			
				F1-BTEX	F2 (C10-C16)		F4 (C34C50)	Вепхепе	Toluene	Ethylbenzene	Xylenes (Total)		
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Property Use, N	ÆCP Guideline (201 ∕Iedium-Fine Textured Water Condition	* *	750	750	150	500		430	18000	2300	4200		
Sample Location	Sample ID	Sample Date											
MW23-2	23-2	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	< 0.50		
MW23-3	23-3	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50		
MW23-4	23-4	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50		

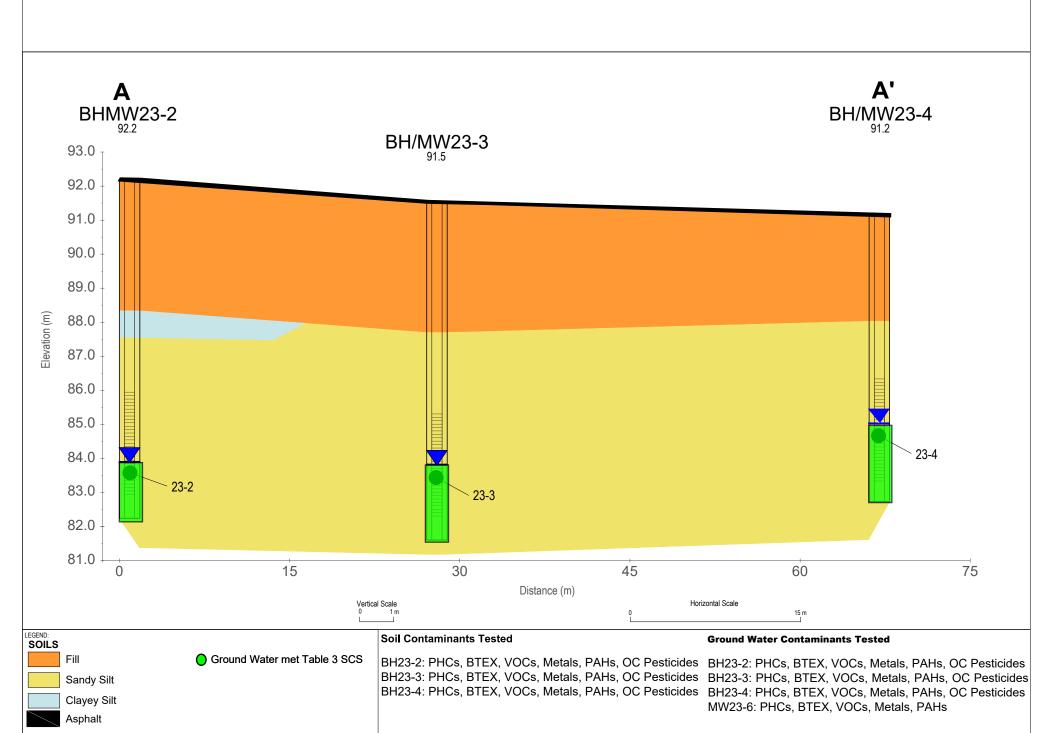


FIGURE NO.

As shown

МН

2/5/2024

8.5" x 11"

 CV

XΑ

1904320

Firearms Outlets Canada

REVISION:

Ground Water - PHCs/BTEX

Part of SSLR 871 Equestrian Court, Unit 1 SSLR Oakville, ON L6L 6L7

Cross Section A-A'

725 Westney Rd S, Ajax

Bedrock not encountered.

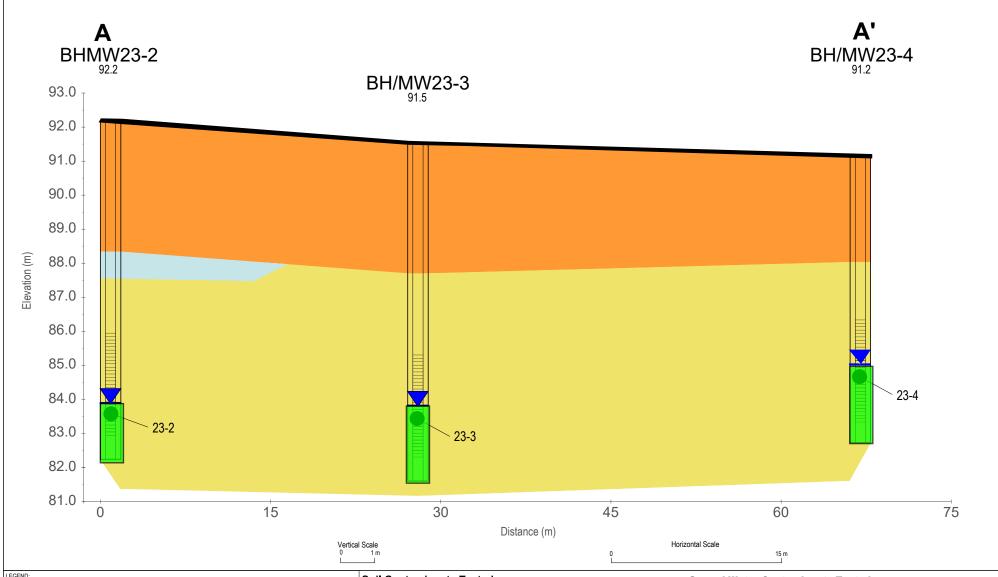
No contaminants detected in soil or ground water.

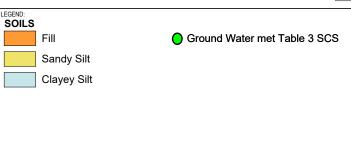
DATE:

CLIENT:

PRINT SIZE

√X-X-X Sample Location


Well Screen


Water Level

WELL DETAILS

Ground Water A	Analytical Results: Vo	latile Organic Co	mpounds ((VOCs)																			
													VOCs										
			Acetone	Вепжие	Bromodichloromethane	Вготоботп	Bromomethane	Carbon tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroform	1,2-Dibromoethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene	Methylene Chloride	1,2-Dichloropropane
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
of Property Use	MECP Guideline (201 e, Medium-Fine Textu Water Condition		130000	430	85000	770	56	8.4	630	82000	22	0.83	9600	9600	6 7	4400	3100	12	17	17	17	5500	140
Sample Location	Sample ID	Sample Date																					
MW23-2	23-2	14-Dec-23	<20	< 0.50	<0.50	< 0.50	< 0.50	<0.20	<0.50	< 0.50	<0.50	< 0.20	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	,	<0.50
MW23-3	23-3	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	< 0.20	< 0.50	< 0.50	<0.50	< 0.20	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	-	<0.50
MW23-4	23-4	14-Dec-23	<20	< 0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50
-	TRIPBLANK	14-Dec-23	<20	< 0.50	<0.50	< 0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	-	< 0.50

Ground Water A	Analytical Results: Vo	latile Organic Co	mpounds	s (VOCs))																		1
													VOCs										
			ন cis-1,3-Dichloropropylene	E trans-1,3-Dichloropropylene	ing 1,3-Dichloropropylene (cis & trans)	Ethylbenzene	n-Hexane	를 Methyl Ethyl Ketone	न् Methyl Isobutyl Ketone	मू MTBE	T Styrene	हि 1,1,1,2-Tetrachloroethane	न् 1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	드 디,1,1-Trichloroethane	हि 1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	र्षेत्र प्राप्तु Chloride	o-Xylene	m+p-Xylenes	Xylenes (Total)
	MECP Guideline (201 e, Medium-Fine Textu Water Condition		-	-	45	2300	520	1500000		1400	9100	28	15	17	18000	6700	30	17	2500	1.7		7300000	
Sample Location	Sample ID	Sample Date																					
MW23-2	23-2	14-Dec-23	< 0.30	< 0.30	<0.50	<0.50	< 0.50	<20	<20	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.30	<0.40	<0.50
MW23-3	23-3	14-Dec-23	<0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.30	<0.40	<0.50
MW23-4	23-4	14-Dec-23	< 0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	< 0.30	<0.40	<0.50
-	TRIPBLANK	14-Dec-23	< 0.30	< 0.30	< 0.50	<0.50	< 0.50	<20	<20	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.30	<0.40	<0.50

Soil Contaminants Tested

 CV

BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-2: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides

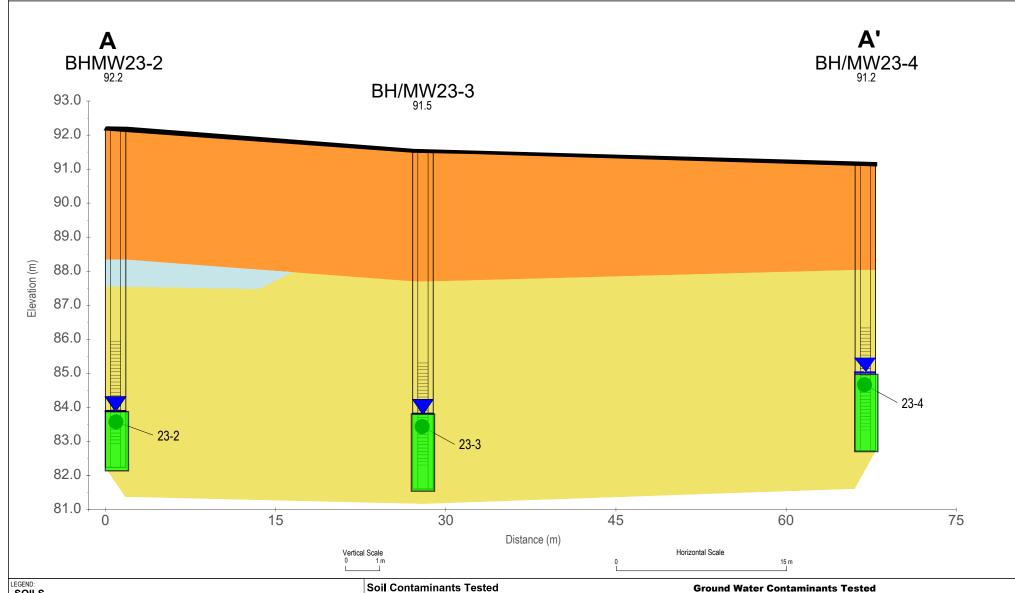
МН

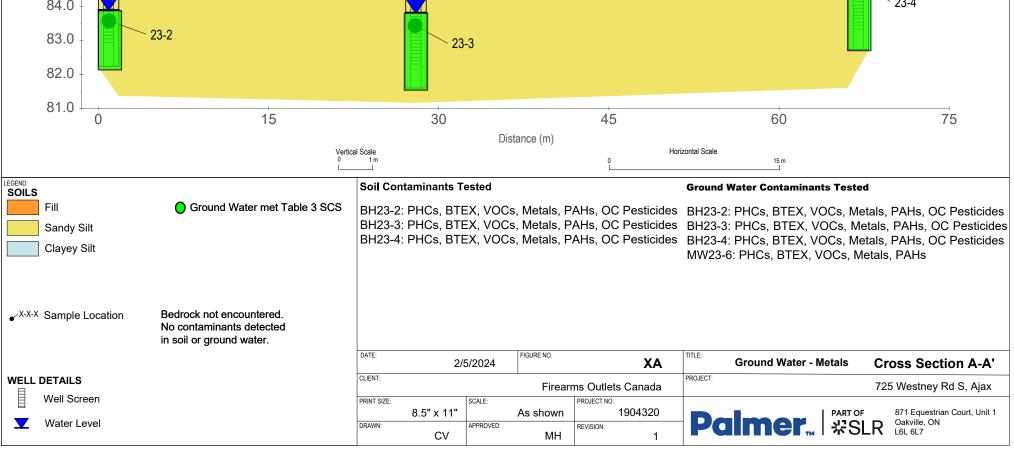
Ground Water Contaminants Tested

BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-3: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides BH23-4: PHCs, BTEX, VOCs, Metals, PAHs, OC Pesticides MW23-6: PHCs, BTEX, VOCs, Metals, PAHs

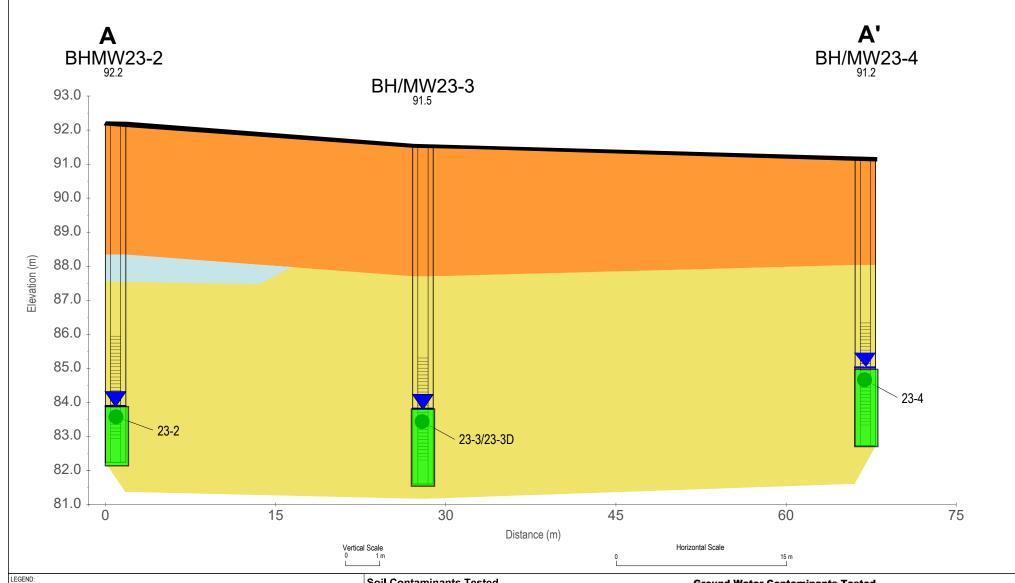
✓ X-X-X Sample Location

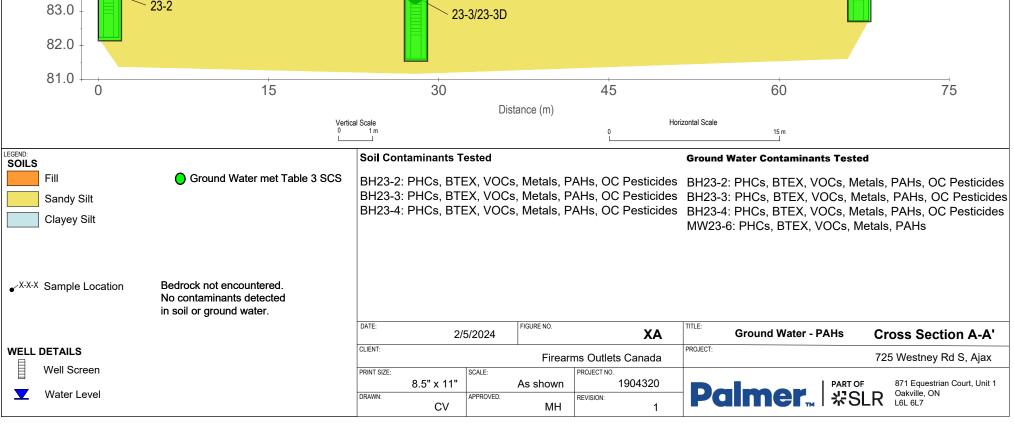
Well Screen

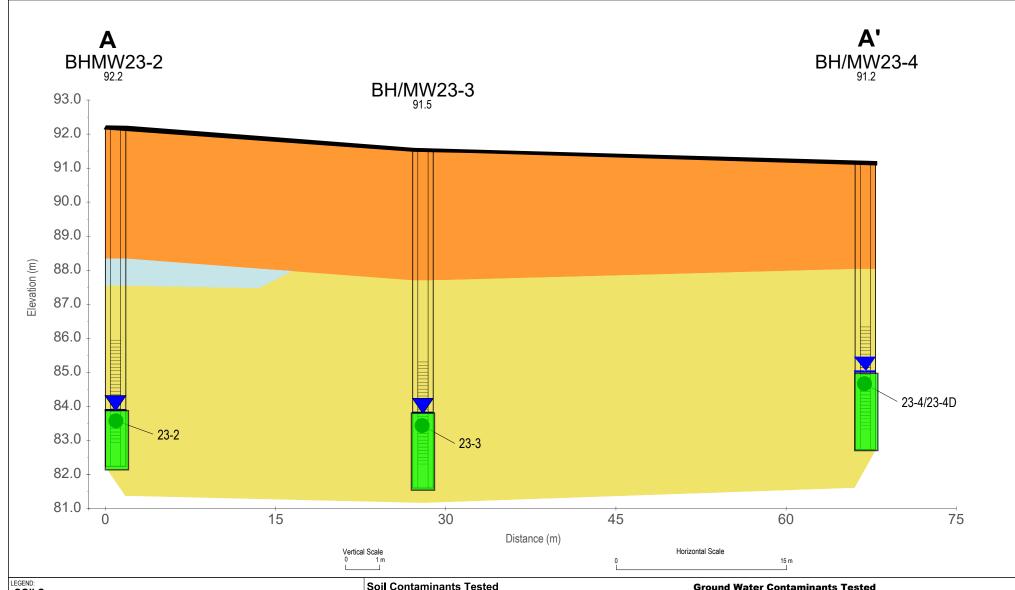

Water Level

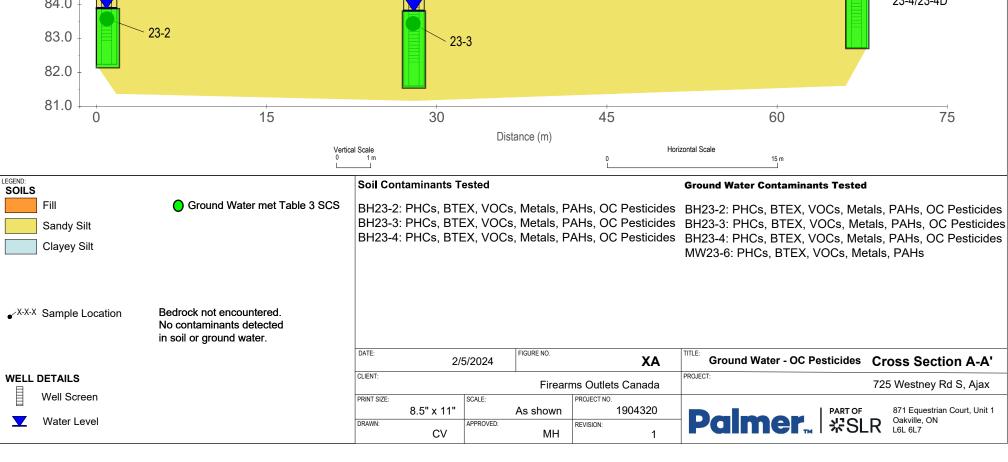

WELL DETAILS

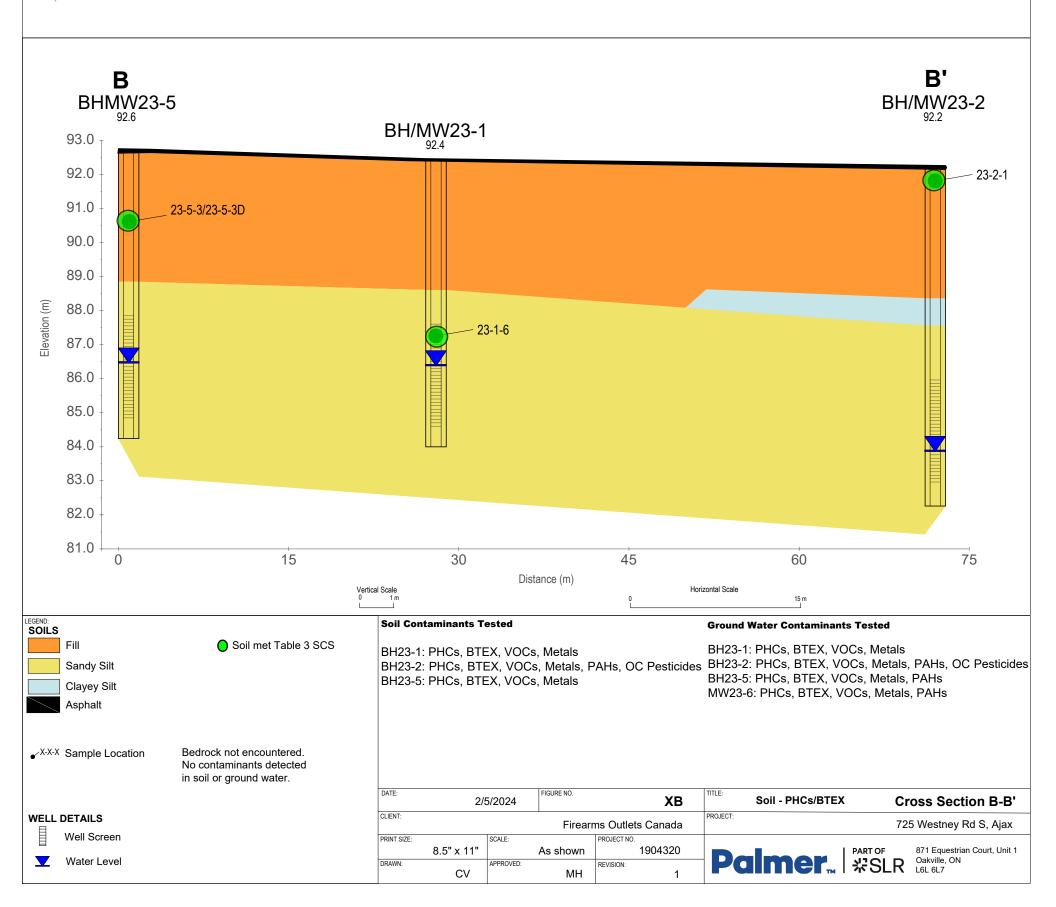
Bedrock not encountered. No contaminants detected in soil or ground water.


DATE:	2/	5/2024	FIGURE NO.	XA	\	Ground Water - V	/OCs	Cross Section A-A'
CLIENT:			Firearı	ms Outlets Canada	a	PROJECT:		725 Westney Rd S, Ajax
PRINT SIZE:		SCALE:		PROJECT NO.				
	8.5" x 11"		As shown	1904320	1	Delmo	PART OF	871 Equestrian Court, Unit 1
DRAWN:	CV	APPROVED:	МН	REVISION:		Palmer	尜SL	R Oakville, ON L6L 6L7

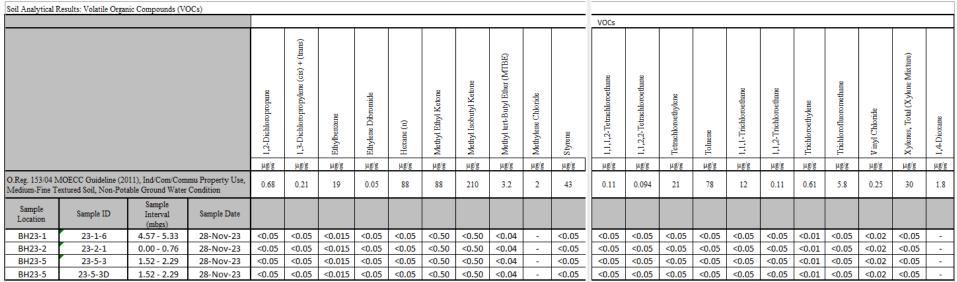

Ground Water A	nalytical Results: Me	etals																			
												Metals									
			문 Antimony (Sb)-Dissolved	ন Arsenic (As)-Dissolved	e Barium (Ba)-Dissolved	돌 Beryllium (Be)-Dissolved	ந் Boron (B)-Dissolved	ट्रिट्टी Cadmium (Cd)-Dissolved	न् Chromium (Cr)-Dissolved	ह्व Cobalt (Co)-Dissolved	ल् Copper (Cu)-Dissolved	ि Lead (Pb)-Dissolved	Molybdenum (Mo)-Dissolved	등 Nickel (Ni)-Dissolved	க் Selemium (Se)-Dissolved	를 Silver (Ag)-Dissolved	전 Sodium (Na)-Dissolved	ল Thallium (TI)-Dissolved	를 Uranium (U)-Dissolved	F Vanadium (V)-Dissolved	를 Zinc (Zn)-Dissolved
	IECP Guideline (201 Iedium-Fine Textured Water Condition		20000	1900	29000	67	45000	2.7	810	66	87	25	9200	490	63	1.5	2300000	510	420	250	1100
Sample Location	Sample ID	Sample Date																			
MW23-2	23-2	14-Dec-23	1.24	0.68	171	<0.02	160	0.122	<0.5	18.5	3.6	0.055	18.8	11.5	2.66	<0.01	119000	0.06	4.25	0.82	20.7
MW23-3	23-3	14-Dec-23	1.14	0.53	205	<0.02	135	0.0477	<0.5	7.04	1.88	<0.05	18.8	6.62	2.3	<0.01	262000	0.05	4.64	0.91	8.1
MW23-4	23-4	14-Dec-23	1.45	1.04	174	<0.02	180	0.0112	<0.5	0.4	3.53	<0.05	15	0.87	0.88	<0.01	23000	0.03	2.37	1.5	13.1

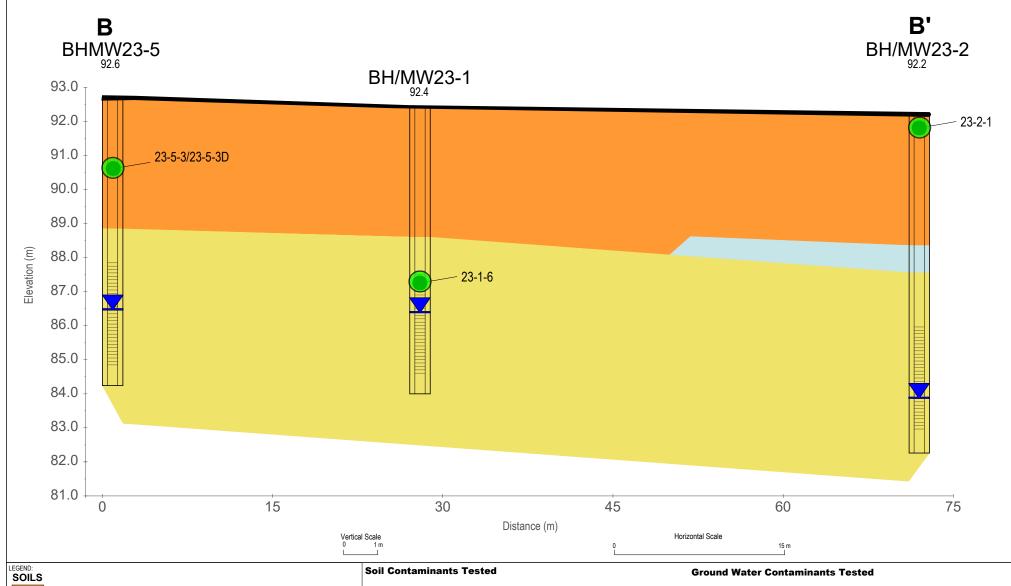


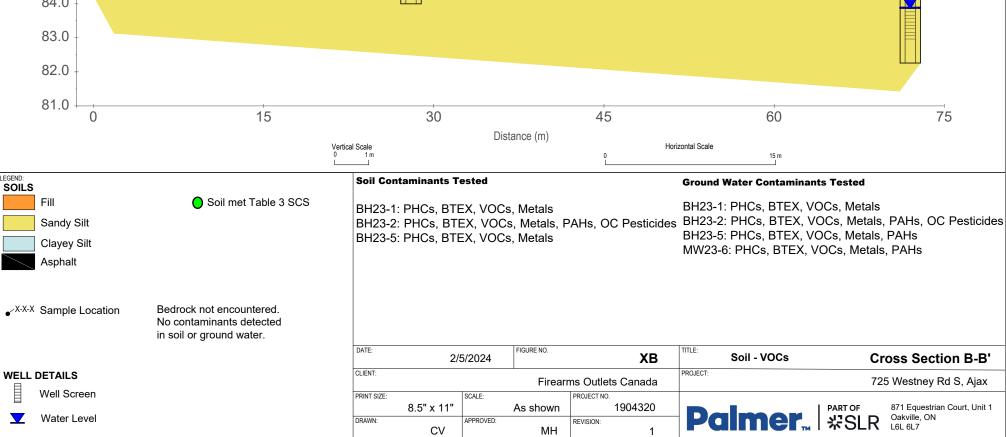

Ground Water A	Analytical Results: Po	lycyclic Aromatic I	Iydrocarbo	ns (PAF	Is)																
												PAHs									
			ন Acenaphthene	न् Acenaphthylene	न Anthracene	ந் Benzo(a)anthracene	न நி Benzo(a)pyrene	்த Benzo(b)fluoranthene	்த Benzo(g,h,i)perylene	ந் Benzo(k)fluoranthene	T Chrysene	ल् Dibenzo(a,h)anthracene	T Fluoranthene	Thorane	Indeno(1,2,3-cd)pyrene	ને 1+2-Methylnaphthalenes*	를 1-Methylnaphthalene	즉 2-Methylnaphthalene	전 Naphthalene	Phenanthrene	Pyrene
	MECP Guideline (201 Medium-Fine Texture Water Condition		1700	1.8	2.4	4.7	0.81	0.75	0.2	0.4	1	0.52	130	400	0.2	1800	1800	1800	6400	580	68
Sample Location	Sample ID	Sample Date																			
MW23-2	23-2	14-Dec-23	< 0.016	<0.01	<0.01	< 0.01	< 0.005	<0.01	< 0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	< 0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-3	23-3	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	<0.01	< 0.01	< 0.015	<0.01	<0.01	<0.05	< 0.02	<0.01
MW23-3	23-3D	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	<0.015	<0.01	<0.01	<0.05	< 0.02	<0.01
MW23-4	23-4	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	<0.01	< 0.01	<0.015	<0.01	<0.01	<0.05	< 0.02	<0.01

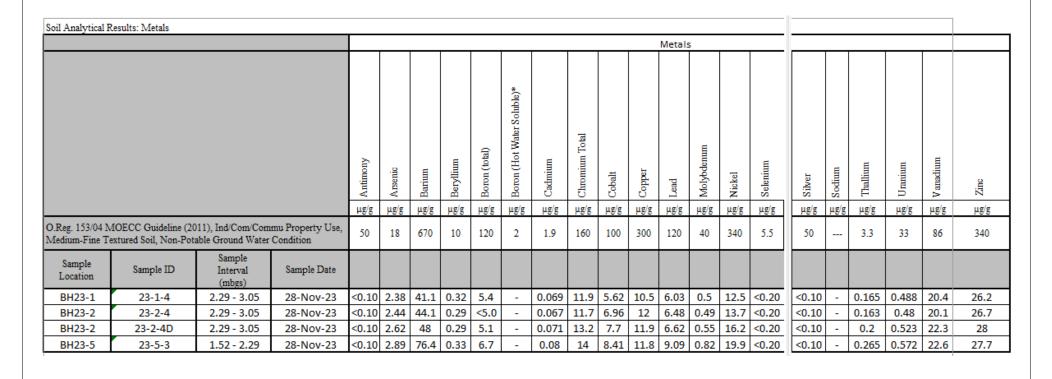


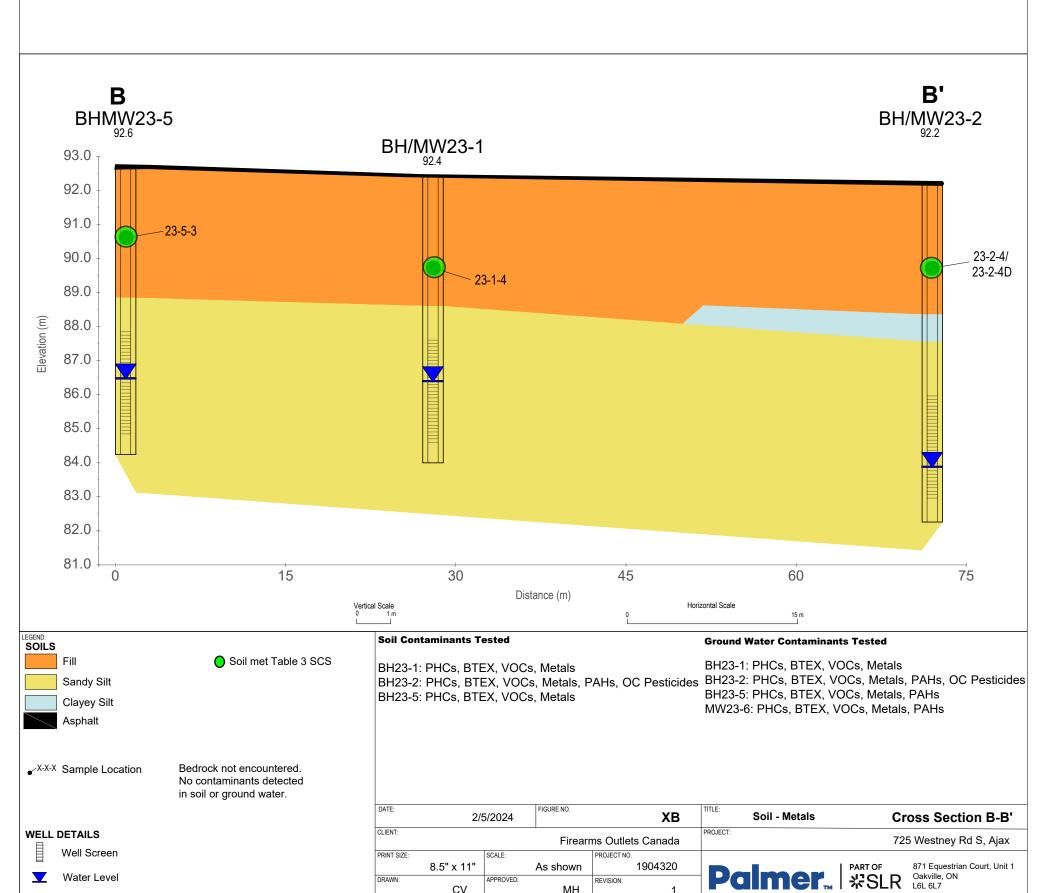
Ground Water A	nalytical Results: Or	ganochlorine (OC) I	Pesticides														
									0	C Pestic	ides						
			를 DDD (Total)	를 DDE (Total)	를 DDT (Total)	T ^{ga} Aldrin	전 Chlordane	Ta Dieldrin	든 Endosulfan (Total)	क् T Endrin	ন Heptachlor	ল্ল Heptachlor Epoxide	न Hexachlorobenzene	ন Hexachlorobutadiene	편 Hexachloroethane	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	ন Methoxychlor
	MECP Guideline (201 Medium-Fine Textured Water Condition		45	20	2.8	8.5	28	0.75	1.5	0.48	2.5	0.048	3.1	4.5	200	1.2	6.5
Sample Location	Sample ID	Sample Date															
MW23-2	23-2	14-Dec-23	< 0.006	< 0.004	< 0.006	<0.008	< 0.011	<0.008	<0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-3	23-3	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	<0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	<0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4D	14-Dec-23	<0.006	< 0.004	< 0.006	<0.008	< 0.011	<0.008	< 0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008

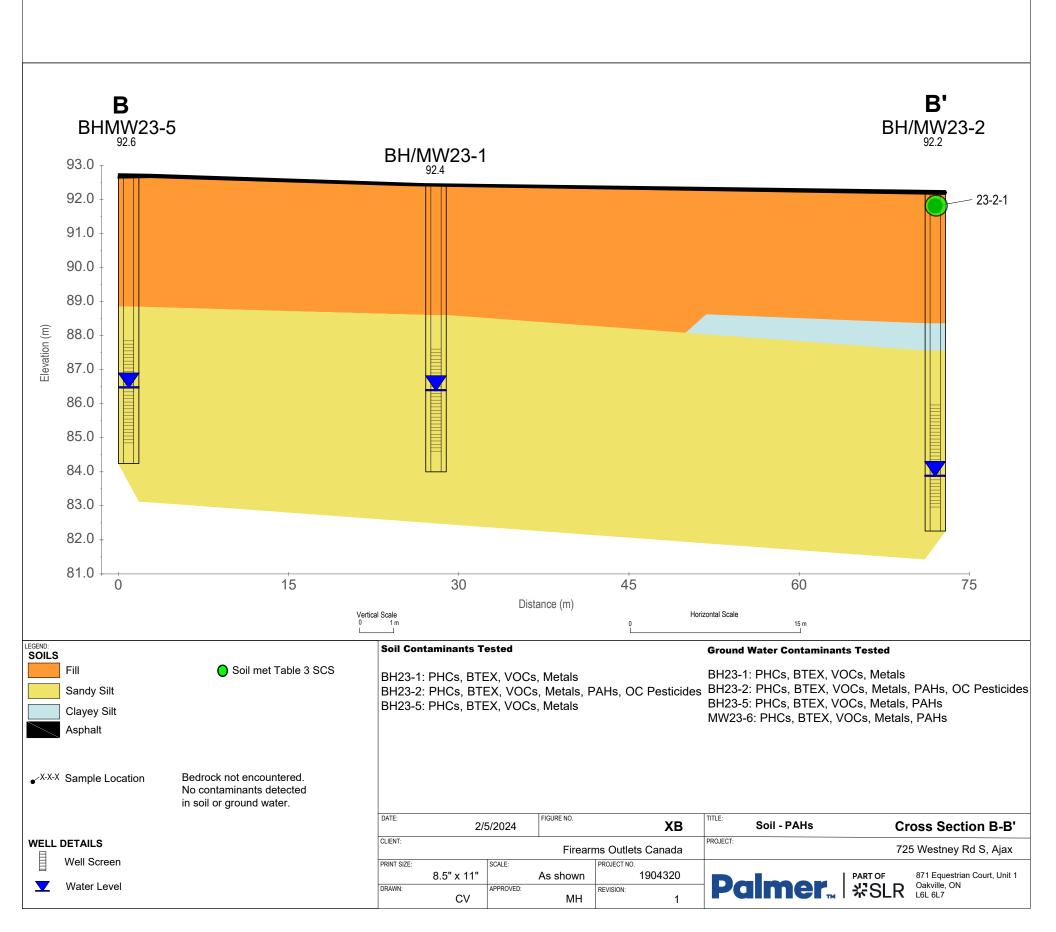




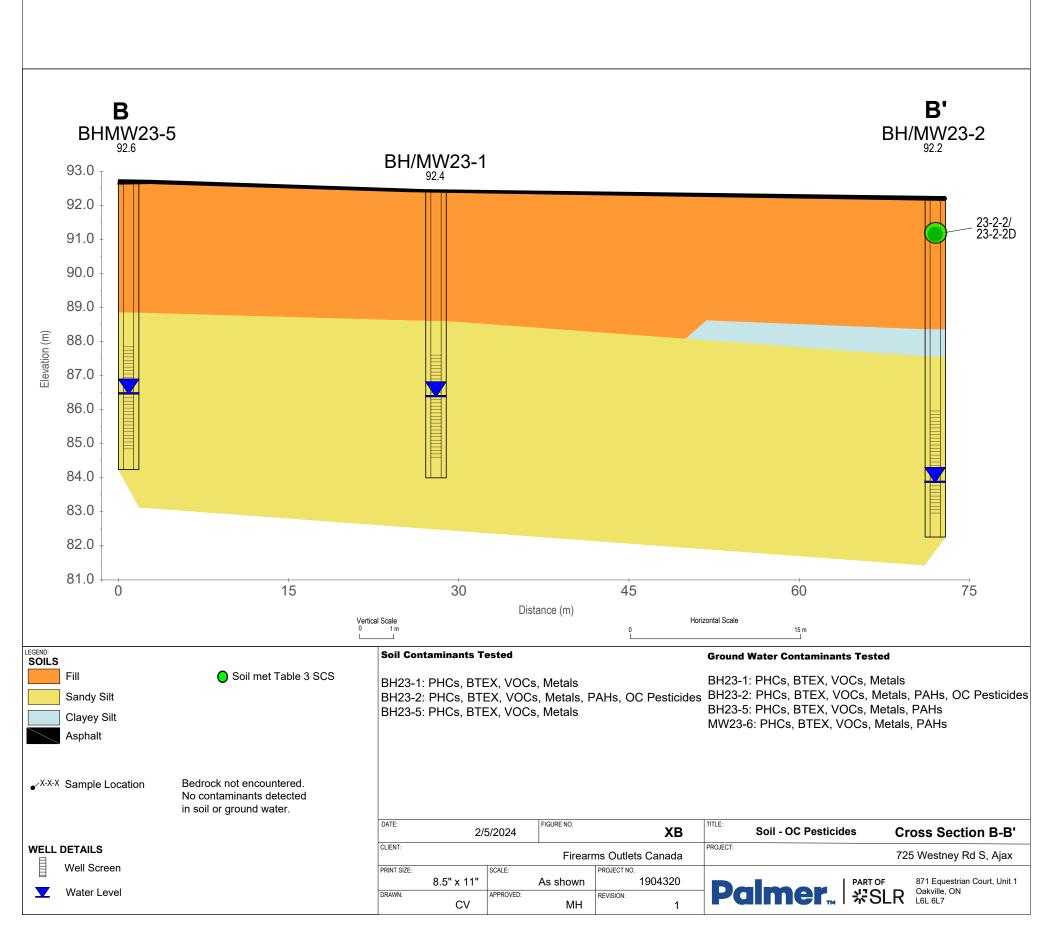

Soil Analytical R	lesults: Petroleum Hy	drocarbons (PHCs)	and Benzene, Tolu	iene, Et	hylbenz	ene, Xy	lenes (B	TEX)				
						PHCs				B1	EX	
				(C6-C10)	m F1 (C6-C10) - BTEX*	西 F2(C10-C16)	西 F3(C16-C34)	西 F4 (C34-C50)	da Benzene oa Benzene	Toluene	西 Ethylbenzene	Xylenes, Total (Xylene Mixture)
_	MOECC Guideline (20 ine Textured Soil, No	* -	• •	65	65	250	2500	6600	0.4	78	19	30
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date									
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	69	<50	< 0.005	<0.05	<0.015	<0.05
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05



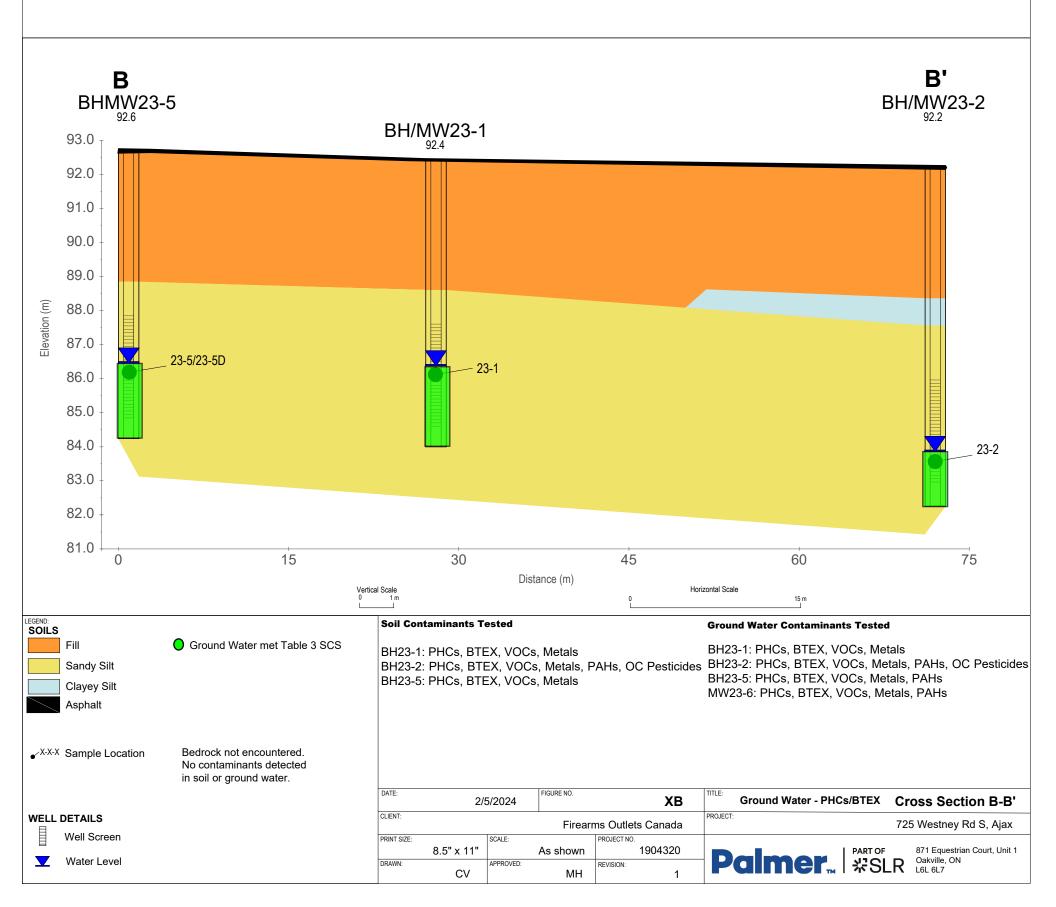

												VO	Cs								
				Acetone	Benzene	Bromodichloromethane	ந்து நில்யவில் நா	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroform	Dibromochloromethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4Dichlorobenzene	Dichlorodifluoromethane	ह्व 1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	E trans.1 2.Dichlomethylene
	MOECC Guideline (20 extured Soil, Non-Pot			28	0.4	18	1.7	0.05	1.5	2.7	0.18	13	8.5	12	0.84	25	21	0.05	0.48	37	9.
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																		
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<0.50	<0.005	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0


REVISION:

MΗ


 CV

Water Level


Soil Analytical R	Results: Polycyclic Ar	omatic Hydrocarbo	ons (PAHs)																	
												PAH	5							
				Methylnaphthalenes, 2-(1-)***	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 ine Textured Soil, No			85	96	0.17	0.74	0.96	0.3	0.96	9.6	0.96	9.6	0.1	9.6	69	0.95	28	16	96
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																	
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05

Soil Analytical R	desults: Organochlorin	ne (OC) Pesticides																
										OC	Pestici	des						
				전 DDD (Total)	m DDE (Total)	E DDT (Total)	ති Aldrin	ল জ Chlordane	ma Dieldrin	π Endosulfan (Total)	ന്റ ആ Endrin	Fe Heptachlor	Heptachlor Epoxide	ന്ത് Hexachlorobenzene	ල් Hexachlorobutadiene	ന്ത് യ	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	ন Methoxychlor
	MOECC Guideline (20 ne Textured Soil, No			4.6	0.65	1.4	0.11	0.05	0.11	0.38	0.04	0.19	0.05	0.66	0.095	0.43	0.063	1.6
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date															
BH23-2	23-2-2	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-2	23-2-2D	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02

Ground Water A	nalytical Results: Pet	roleum Hydrocarbo	ns (PH	Cs) and	Benzen	e, Tolue	ene, Eth	ylbenzer	ıe, Xyler	ies (BTE	X)
					PHCs		1		BT	EX	
			[편] F1 (C6-C10)	F1-BTEX	를 F2 (C10-C16)	를 F3 (C16-C34)	를 F4(C34C50)	Benzene T	Toluene	돌 Ethylbenzene	Xylenes (Total)
	ECP Guideline (201 ledium-Fine Textured Water Condition	and the second s	750	750	150	500	500	430	18000	2300	4200
Sample Location	Sample ID	Sample Date									
MW23-1	23-1	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-2	23-2	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	< 0.50
MW23-5	23-5	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-5	23-5D	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	< 0.5

				•												_									
O.Reg. 153/04 MECP Guideline (2011), All Types of Property Use, Medium-Fine Textured Soil, Non-Potable Ground Water Condition 130000 430 85000 770 56 8.4 630 82000 22 0.83 9600 9600 67 4400 3100 12 17 1 Sample Location Sample ID Sample Date Sample Location Sample ID Sample Date Sample ID Samp																									
			Acetone	Вепхене	Bromodichlowmethane	Decree Company	Diomotorin	Bromomethane	Carbon tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroform	1,2-Dibromoethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1.1.Dichlomethylene	i, Doillean Jane	cis-1,z-Diemoroemylene	trans-1,2-Dichloroethylene	Methylene Chloride	1,2-Dichloropropane
			μg/L	μg/	Ĺμg	/L μ	z/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/I	. µg	/L μ	g/L	μg/L	μg/L	μg/l
f Property Us	e, Medium-Fine Textu		13000	0 43	850	7 7	70	56	8.4	630	82000	22	0.83	9600	9600	67	4400	3100	12	1	7 1	17	17	5500	140
Location	Sample ID	Sample Date																							
			_	_	_		-		$\overline{}$			_								$\overline{}$		_	_	-	<0.5
	_		_	-	_	_	$\overline{}$	_	$\overline{}$			_				_	_	_	_	_	_	-	0.50	-	<0.5
				-		-	$\overline{}$	_	$\overline{}$			_						_	_	_	_	_	0.50	-	<0.5
MW23-5			_	_			-	-	_		_	_					_	_	_	_	_	-	0.50	-	<0.:
-	TRIPBLANK	14-Dec-23	<20	<0	50 <0.	.50 <0	.50	<0.50	(0.20)	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	0 <0.5	0 < 0	.50 <0).50 <	0.50	-	<0.:
Fround Water A	Analytical Results: Vola	tile Organic Con	npounds ((VOCs)																					
									_					VOCs							1	Т	_	_	—
			cis-1,3-Dichloropropylene	trans-1,3-Dichloropropylene	8					Methyl Isobutyl Ketone	MTBE	Styrene		1,1,2,2-Tetrachloroethane					Trichloroethylene		Vinyl chloride	o-Xylene	Water Violence	_	Xylenes (Total)
-			μg/L	μg/L	μg/L	μg/L	μg/L	L μg/I	. μ	ıg/L	μg/L	$\mu \text{g/L}$	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	με	_/ L	_
of Property Use	e, Medium-Fine Texture		-	-	45					0000	1400	9100		15					17			4200		0000	

Sample ID

23-1

23-2

23-5

23-5D

TRIPBLANK

Location MW23-1

MW23-2

MW23-5

MW23-5

Sample Date

14-Dec-23

14-Dec-23

14-Dec-23

14-Dec-23

14-Dec-23

<0.30 <0.30 <0.50 <0.50 <0.50

<0.30 <0.30 <0.50 <0.50 <0.50

<0.30 <0.30 <0.50 <0.50 <0.50

<0.30 <0.30 <0.50 <0.50 <0.50

<0.30 <0.30 <0.50 <0.50 <0.50

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<0.50 <0.50 <0.50 <0.50 <0.50

<0.50 <0.50 <0.50 <0.50 <0.50

<0.50 <0.50 <0.50 <0.50 <0.50

<0.50 <0.50 <0.50 <0.50 <0.50

<0.50 <0.50 <0.50

<0.50 <0.50

<0.50 <0.50 <0.50

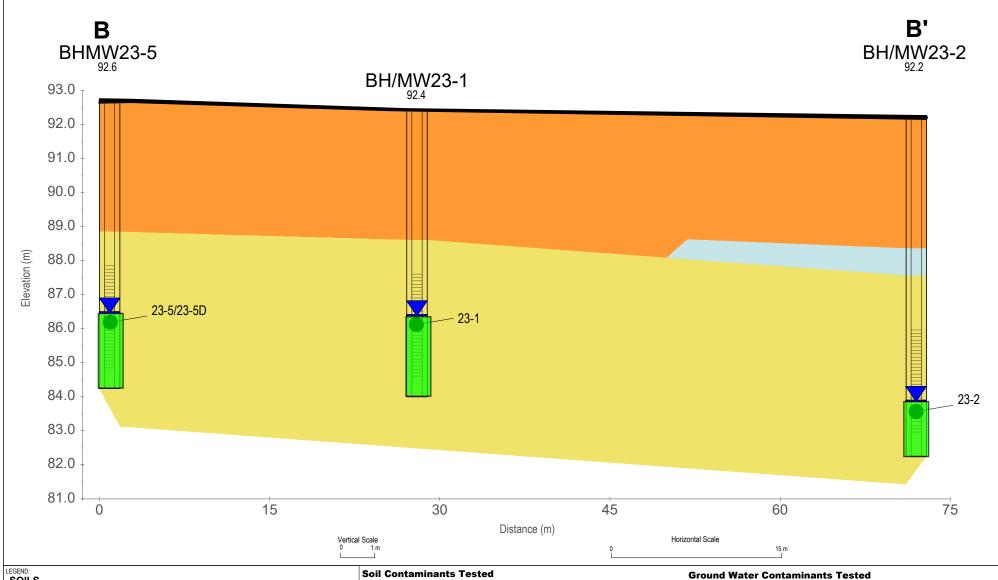
<0.40 <0.50

<0.40 <0.50

<0.40 <0.50

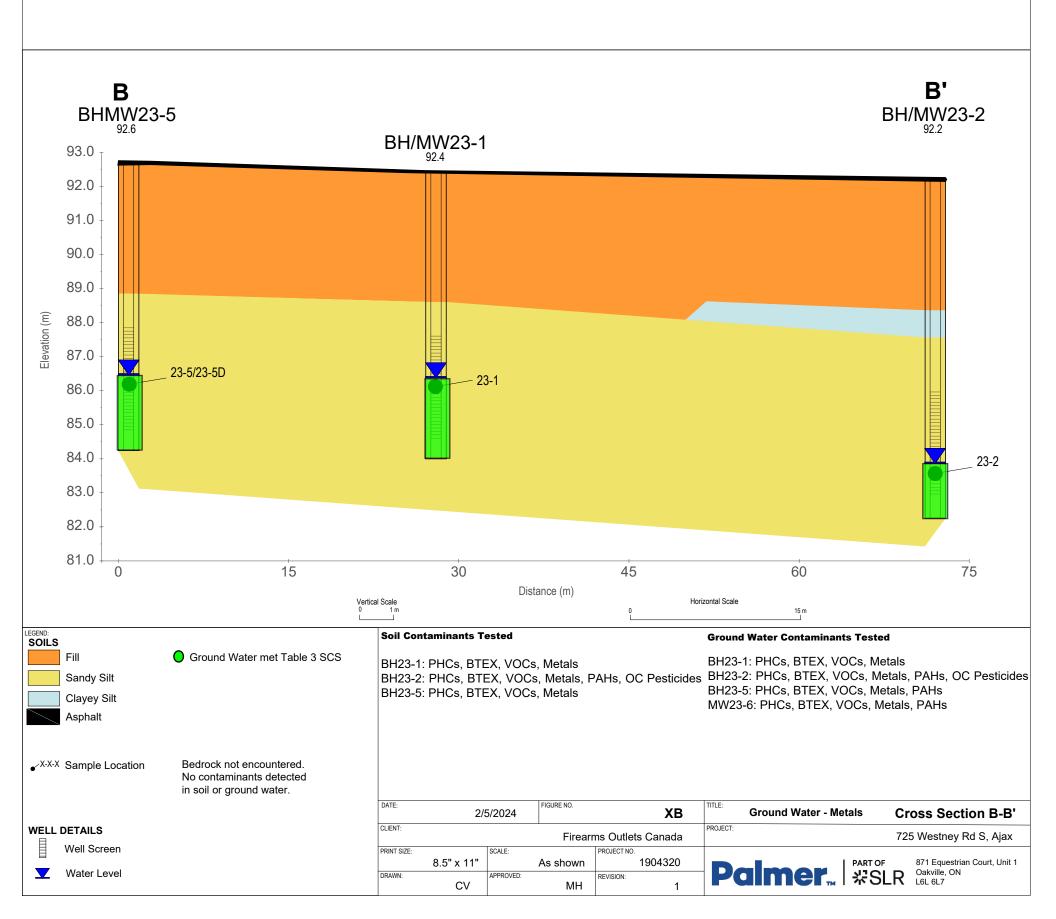
<0.40 <0.50

<0.40 <0.50

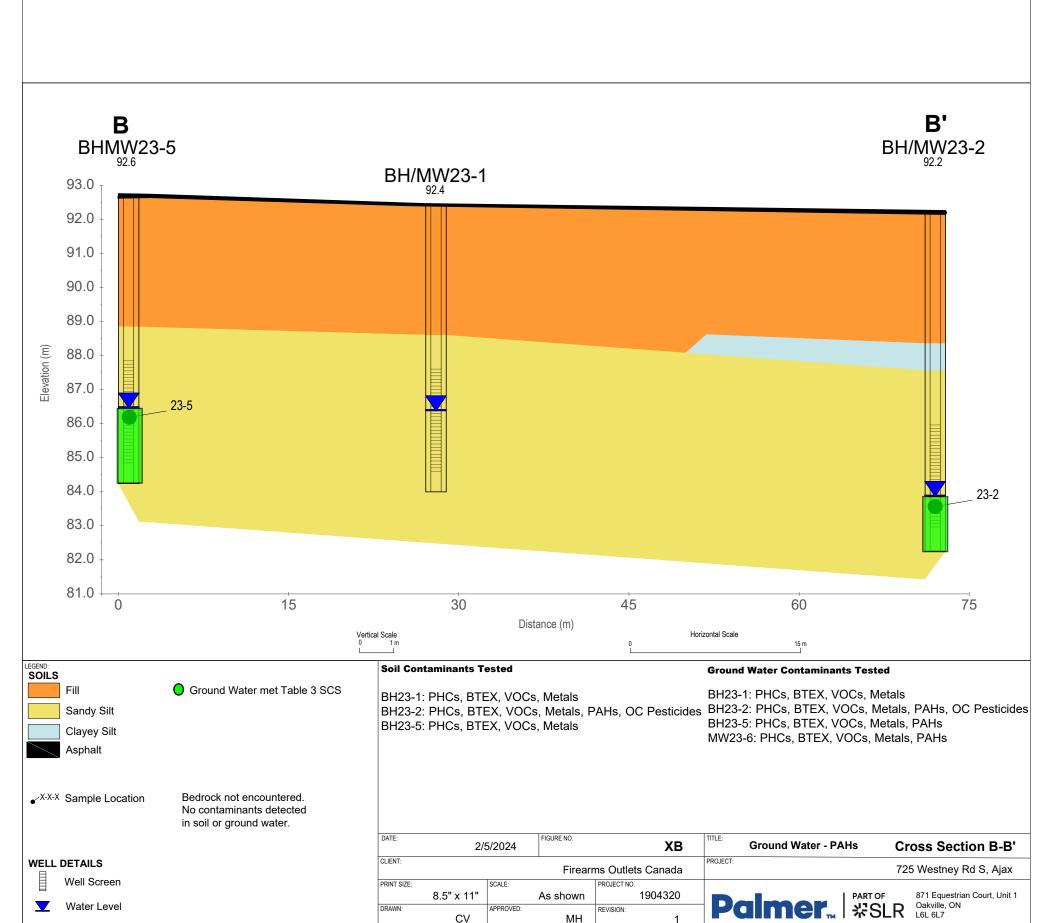

<0.50 <0.50 <0.50 <0.30

<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.30

<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50

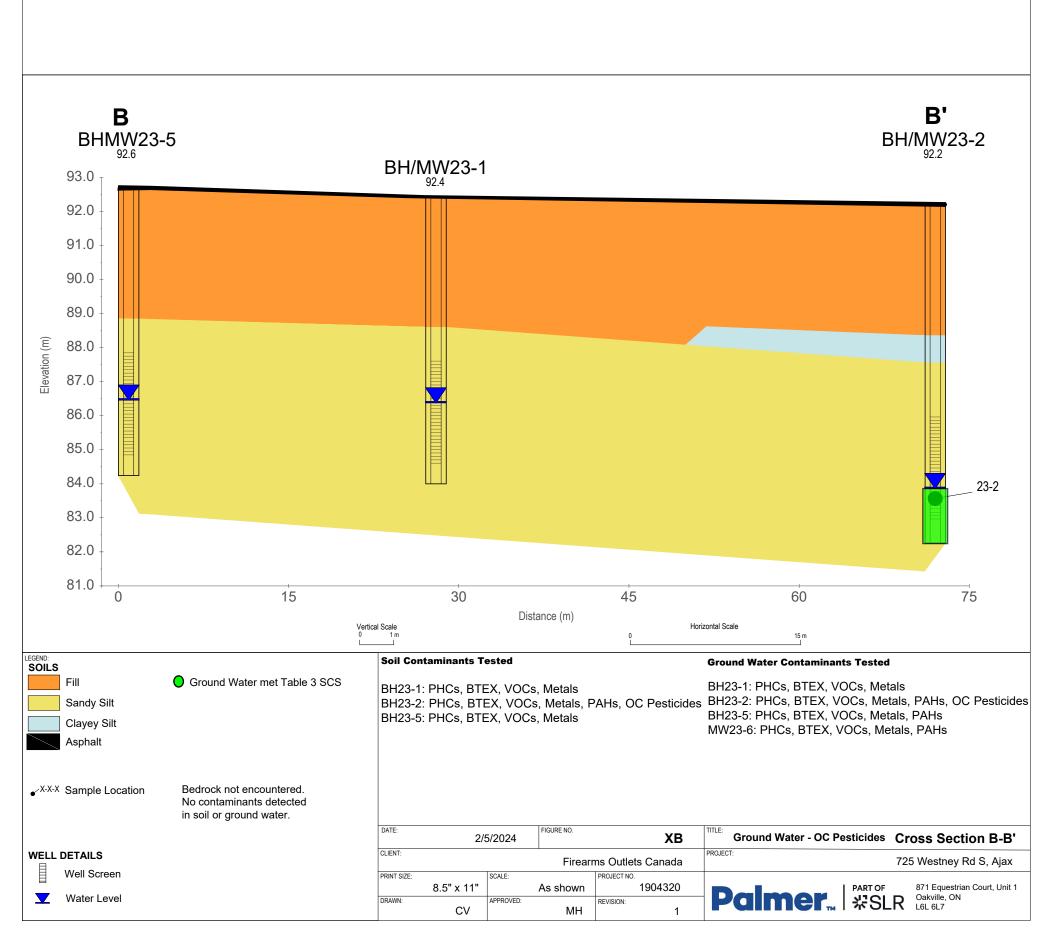

<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.30

<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.30



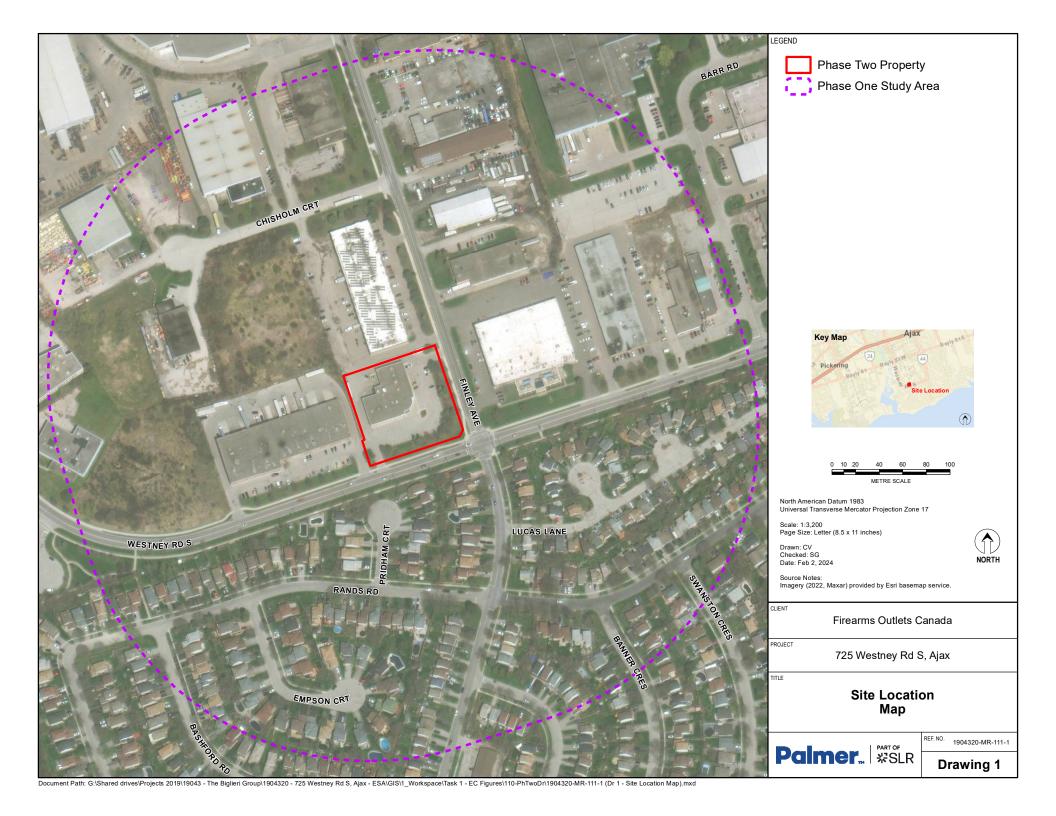
Ground Water A	analytical Results: Me	eta1s																			
												Metals									
			주 Antimony (Sb)-Dissolved	표 Arsenic (As)-Dissolved	ந் Barium (Ba)-Dissolved	ந் Beryllium (Be)-Dissolved	ந் Boron (B)-Dissolved	ন Cadmium (Cd)-Dissolved	ল Chromium (Cr)-Dissolved	ह्न Cobalt (Co)-Dissolved	든 Copper (Cu)-Dissolved	를 Lead (Pb)-Dissolved	न् Molybdenum (Mo)-Dissolved	돌 Nickel (Ni)-Dissolved	Selenium (Se)-Dissolved	를 Silver (Ag)-Dissolved	ਨੂੰ P Sodium (Na)-Dissolved	즘 Thallium (TI)-Dissolved	ন Uranium (U)-Dissolved	क Vanadium (V)-Dissolved	F Zinc (Zn)-Dissolved
	MECP Guideline (201 Medium-Fine Textured Water Condition		20000		29000	67	45000	2.7	810	66	87	25	9200	490	63	1.5	2300000	510	420	250	1100
Sample Location	Sample ID	Sample Date																			
MW23-1	23-1	14-Dec-23	<1.0	<1.0	332	<0.2	109	0.338	<5.0	23.2	2.61	<0.5	12.5	19	2.74	<0.1	316000	0.12	8.18	<5.0	11.2
MW23-2	23-2	14-Dec-23	1.24	0.68	171	< 0.02	160	0.122	<0.5	18.5	3.6	0.055	18.8	11.5	2.66	< 0.01	119000	0.06	4.25	0.82	20.7
MW23-5	23-5	14-Dec-23	<0.1	0.63	293	<0.02	71	0.0069	<0.5	1.3	0.39	<0.05	0.373	1.14	0.06	<0.01	26000	<0.01	0.47	0.6	2.7
MW23-5	23-5D	14-Dec-23	<0.1	0.67	295	< 0.02	76	0.0073	<0.5	1.35	0.4	<0.05	0.362	1.45	0.05	< 0.01	25900	< 0.01	0.48	0.6	2.8

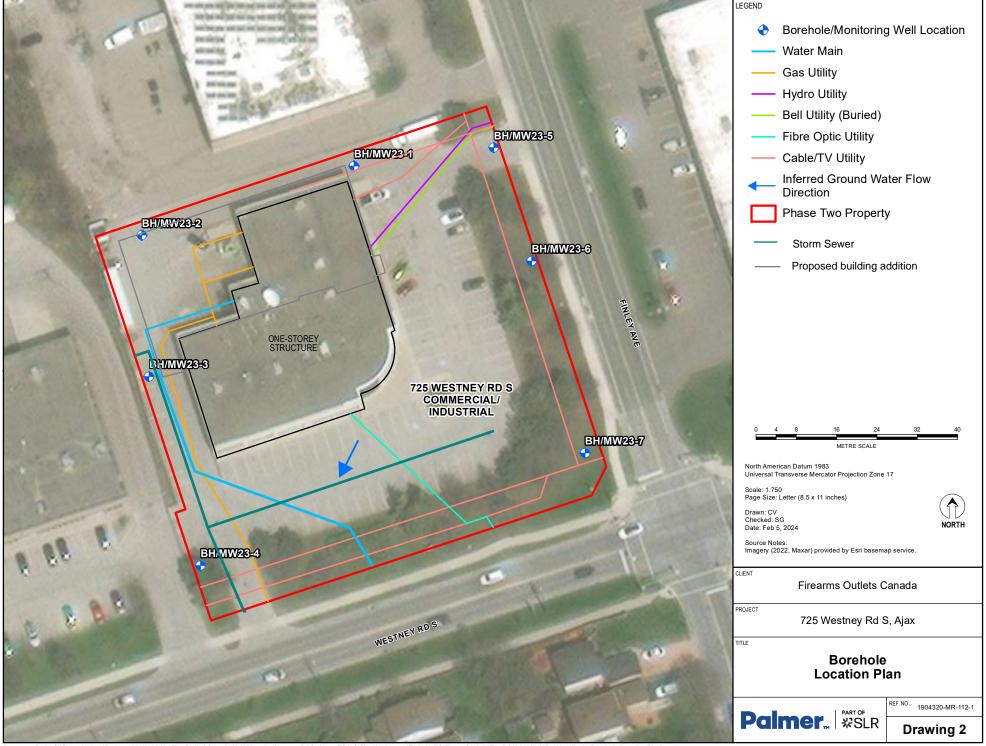
Ground Water A	nalytical Results: Po	lycyclic Aromatic I	Hydrocarbo	ns (PAI	Hs)																
												PAHs									
			전 전 Acenaphthene	Acenaphthylene	Anthracene	E Benzo(a)anthracene	т Вепzо(а)ругепе Т	Enrzo(b)fluoranthene	Benzo(g,h,i)perylene	E Benzo(k)fluoranthene	ন Chrysene	Dibenzo(a,h)anthracene	帝 Fluoranthene	т Пиоте	ল লি Indeno(1,2,3-cd)pyrene	eg 1+2-Methymaphthalenes*	F 1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Т Ругепе
	ÆCP Guideline (201 Medium-Fine Texture Water Condition		1700	1.8	2.4	4.7	0.81	0.75	0.2	0.4	1	0.52	130	400	0.2	1800	1800	1800	6400	580	68
Sample Location	Sample ID	Sample Date																			
MW23-2	23-2	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	< 0.01	<0.01	< 0.015	<0.01	< 0.01	<0.05	<0.02	<0.01
MW23-5	23-5	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.01	< 0.01	<0.01	< 0.015	<0.01	< 0.01	<0.05	< 0.02	<0.01

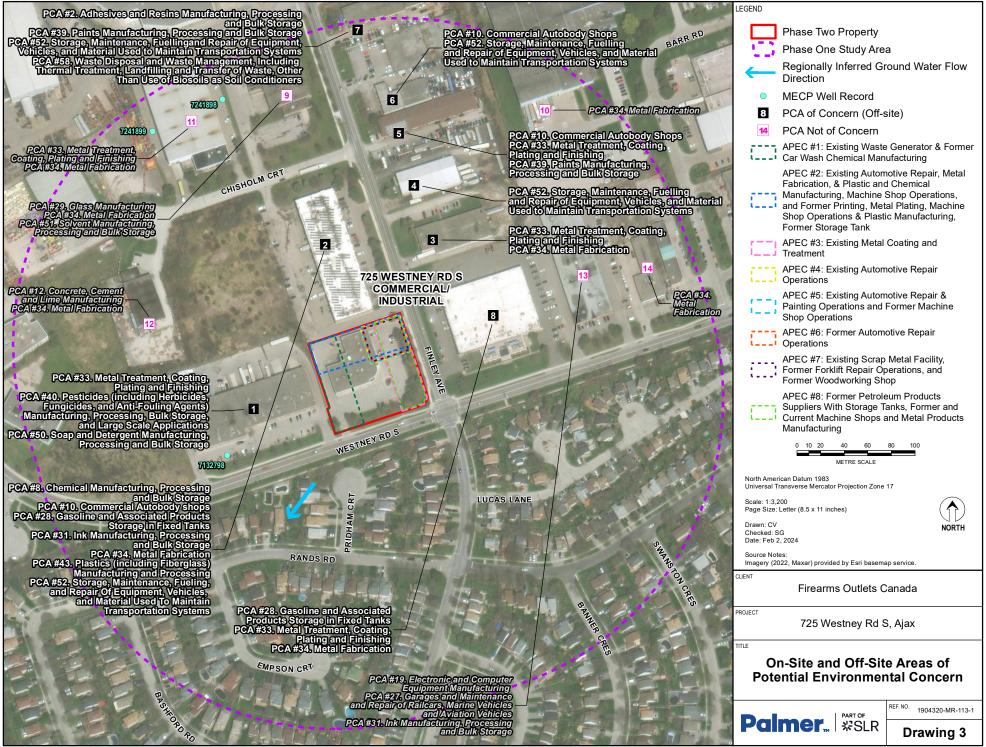

REVISION:

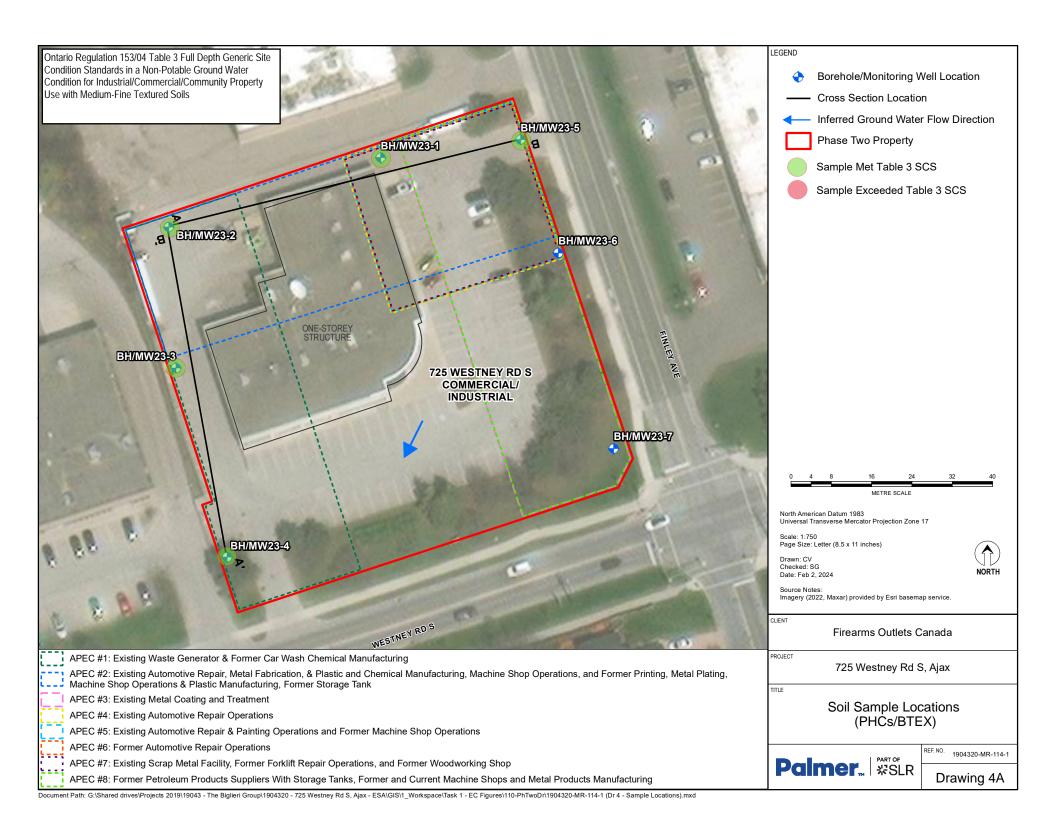
МН

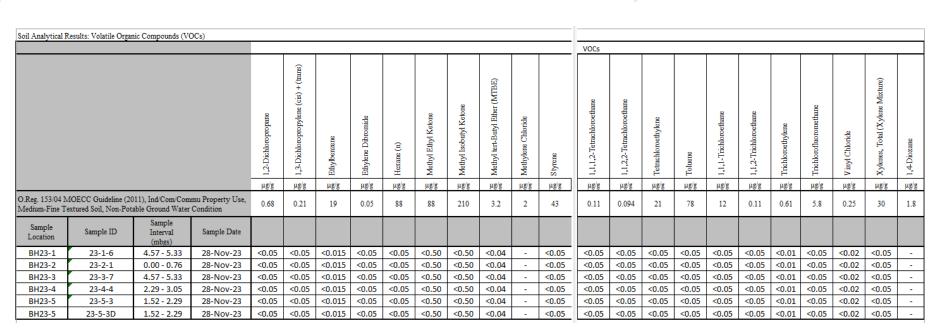
 CV

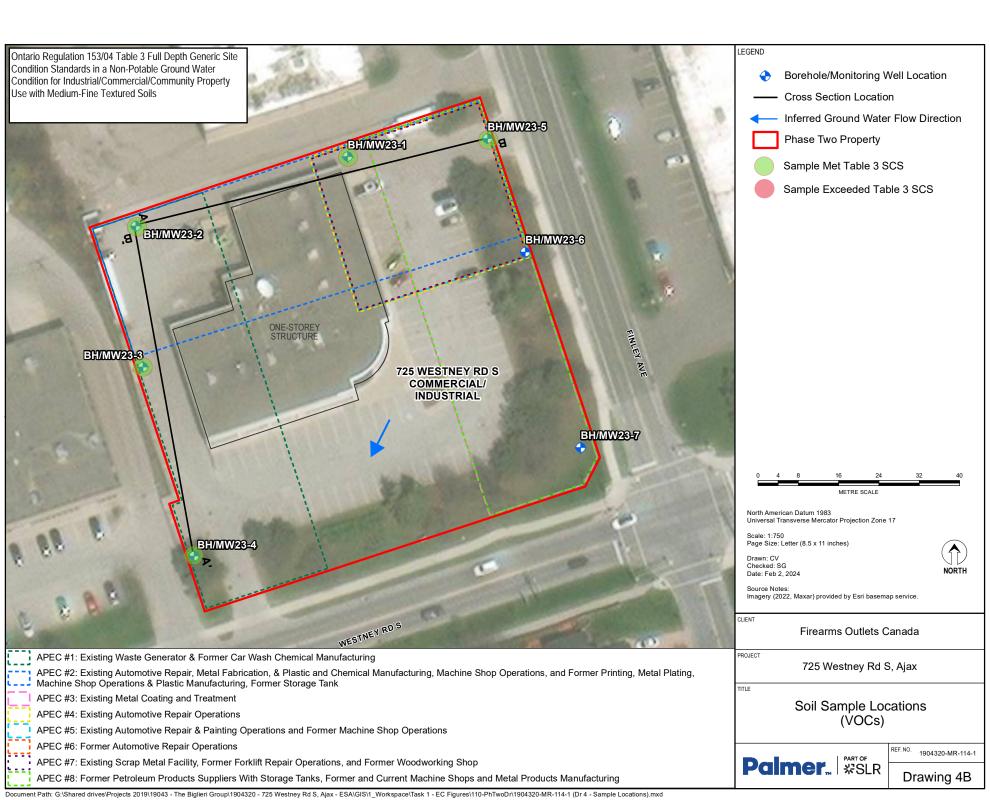

Water Level


Ground Water A	Analytical Results: On	ganochlorine (OC) I	Pesticides														
				1		ı			0	C Pestic	ides						
			DDD (Total)	DDE (Total)	DDT (Total)	Aldrin	Chlordane	Dieldrin	Endosulfan (Total)	Endrin	Heptachlor	Heptachlor Epoxide	Нехас/ногобепгепе	Hexachlorobutadiene	Hexachloroethane	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	Methoxychlor
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Property Use, N	MECP Guideline (201 Medium-Fine Textured Water Condition		45	20	2.8	8.5	28	0.75	1.5	0.48	2.5	0.048	3.1	4.5	200	1.2	6.5
Sample Location	Sample ID	Sample Date															
MW23-2	23-2	14-Dec-23	< 0.006	< 0.004	< 0.006	<0.008	< 0.011	< 0.008	< 0.01	< 0.01	<0.008	< 0.008	< 0.008	<0.008	<0.008	< 0.008	<0.008

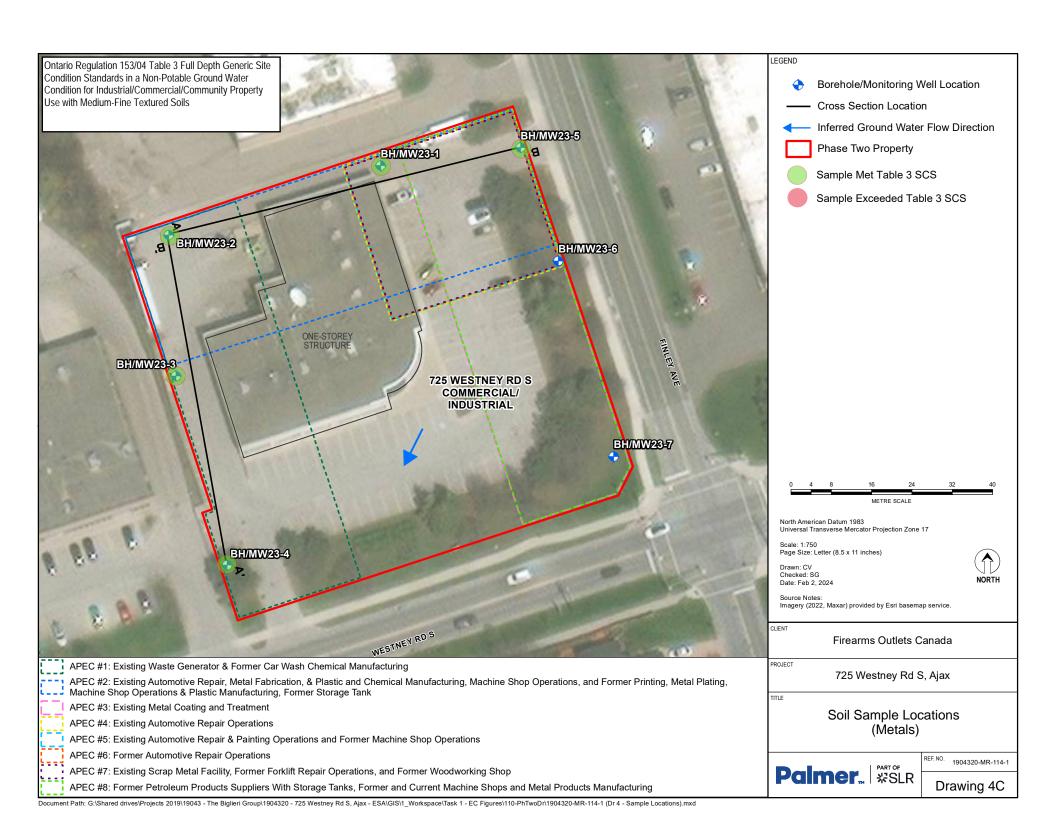



Drawings

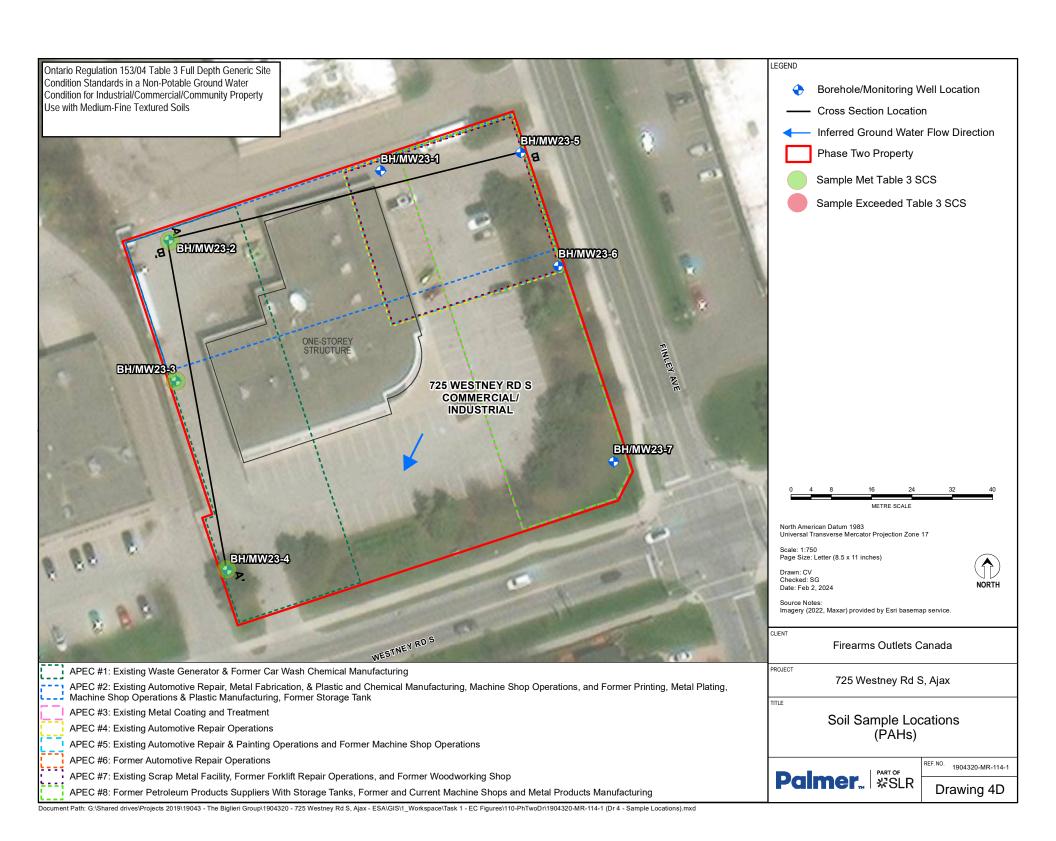


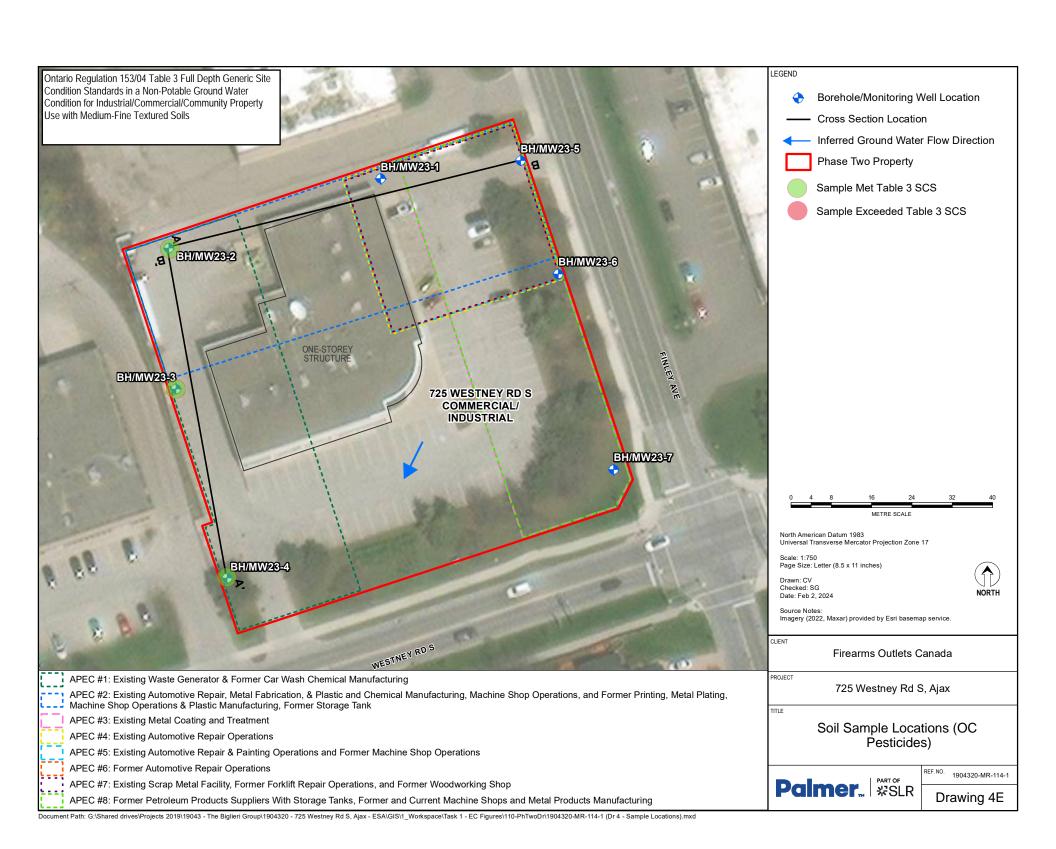


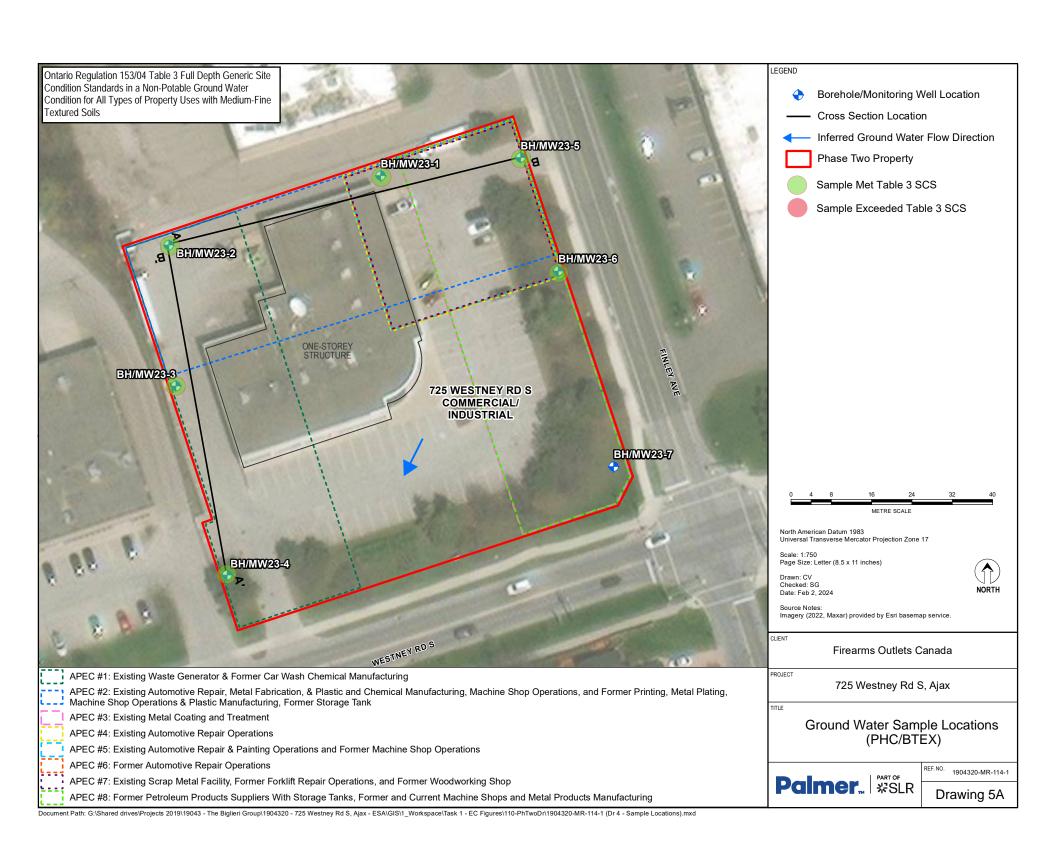
Soil Analytical R	lesults: Petroleum Hy	drocarbons (PHCs)	and Benzene, Tol	uene, Et	hylbenz	ene, Xy	lenes (B	TEX)				
						PHCs				B1	ΓEX	
				F1 (C6-C10)	F1 (C6-C10) - BTEX*	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
_	MOECC Guideline (20 ne Textured Soil, No	· ·		65	65	250	2500	6600	0.4	78	19	30
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date									
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	69	<50	<0.005	<0.05	<0.015	<0.05
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<5.0	<5.0	19	58	<50	<0.005	<0.05	<0.015	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	<0.015	<0.05
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<5.0	<5.0	<10	<50	<50	<0.005	<0.05	< 0.015	<0.05



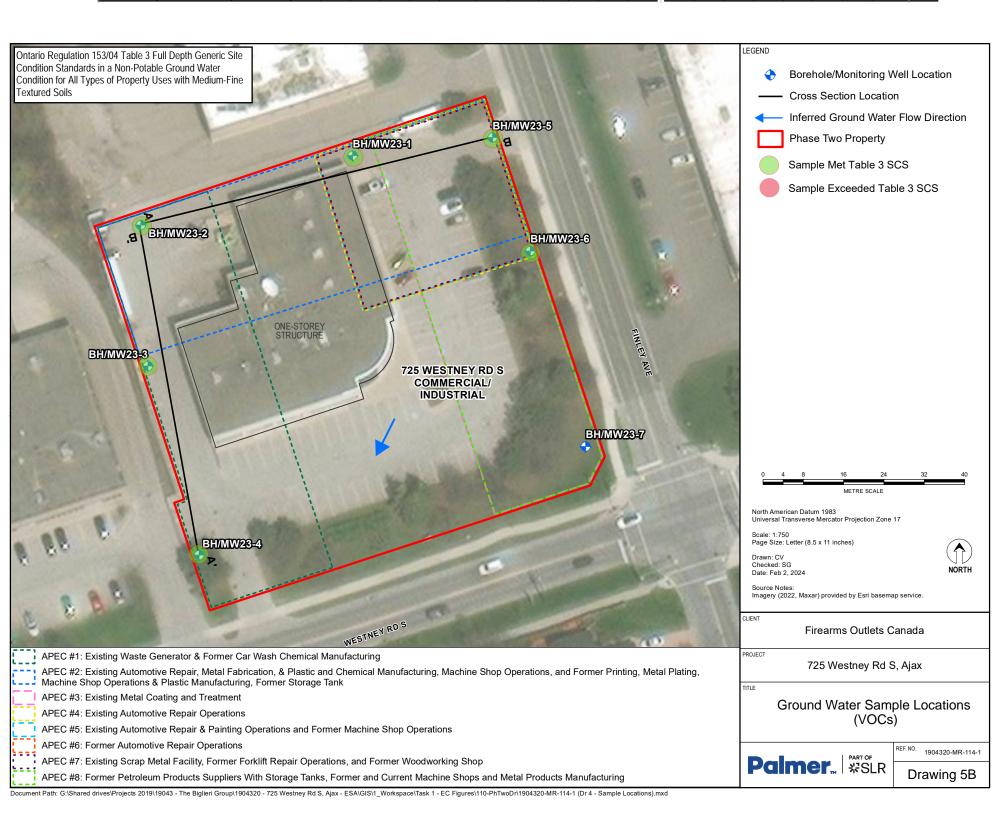
Soil Analytical R	Results: Volatile Organ	nic Compounds (VC	OCs)																		
												VO	Cs								
				Acetone	Вепжне	Bromodichloromethane	. Вготобит	Bromomethane	. Carbon Tetrachloride	Січоговетже	Сілютогіп	Dibromochloromethane	1,2-Dichlorobenzane	1,3-Dichlorobenzene	1,4Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	AOECC Guideline (20 extured Soil, Non-Pot			28	0.4	18	1.7	0.05	1.5	2.7	0.18	13	8.5	12	0.84	25	21	0.05	0.48	37	9.3
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																		
BH23-1	23-1-6	4.57 - 5.33	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-5	23-5-3	1.52 - 2.29	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-5	23-5-3D	1.52 - 2.29	28-Nov-23	<0.50	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05



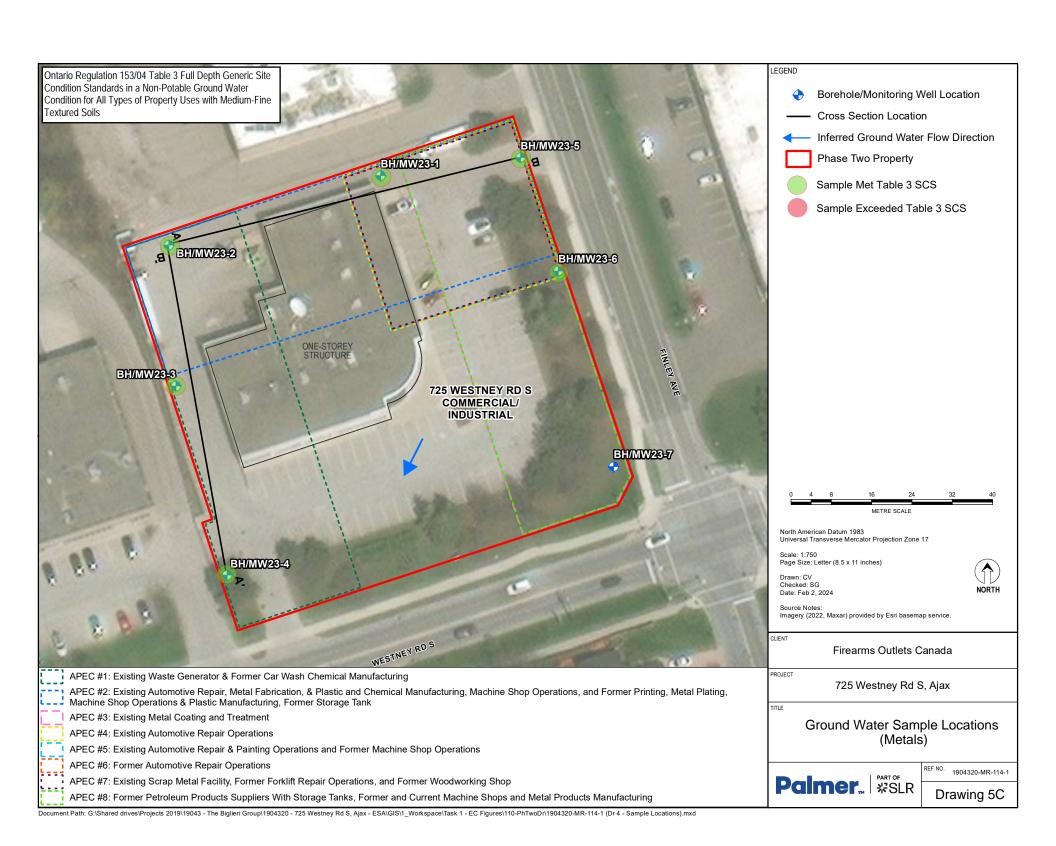

Soil Analytical R	Results: Metals																						
														Metals	5								
				Antimony	Arsenic	Barium	Beryllium	Boron (total)	Boron (Hot Water Soluble)*	Cadmium	Chromium Total	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	g. 153/04 MOECC Guideline (2011), Ind/Com/Commu Propert um-Fine Textured Soil, Non-Potable Ground Water Condition				18	670	10	120	2	1.9	160	100	300	120	40	340	5.5	50		3.3	33	86	340
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																				
BH23-1	23-1-4	2.29 - 3.05	28-Nov-23	<0.10	2.38	41.1	0.32	5.4	-	0.069	11.9	5.62	10.5	6.03	0.5	12.5	<0.20	<0.10	-	0.165	0.488	20.4	26.2
BH23-2	23-2-4	2.29 - 3.05	28-Nov-23	<0.10	2.44	44.1	0.29	<5.0	-	0.067	11.7	6.96	12	6.48	0.49	13.7	<0.20	<0.10	-	0.163	0.48	20.1	26.7
BH23-2	23-2-4D	2.29 - 3.05	28-Nov-23	<0.10	2.62	48	0.29	5.1	-	0.071	13.2	7.7	11.9	6.62	0.55	16.2	<0.20	<0.10	-	0.2	0.523	22.3	28
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.10	2.19	61	0.29	6	-	0.085	12.2	5.39	9.76	5.52	0.32	11.5	<0.20	<0.10	-	0.132	0.485	22.5	27.9
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.10	2.63	60.1	0.3	6.6	-	0.078	12	7.07	10	6.63	0.53	16	<0.20	<0.10	-	0.178	0.589	22.1	28.5
BH23-5	23-5-3	28-Nov-23	<0.10	2.89	76.4	0.33	6.7	-	0.08	14	8.41	11.8	9.09	0.82	19.9	<0.20	<0.10	-	0.265	0.572	22.6	27.7	


Soil Analytical R	Results: Polycyclic Ar	omatic Hydrocarbo	ons (PAHs)																	
our many actual			(11110)									PAH	5							
				Methylnaphthalenes, 2-(1-)***	Acenaphthene	Acenaphthylene	Anthracene	B enzo(a)anthracene	B enzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (20 ine Textured Soil, No			85	96	0.17	0.74	0.96	0.3	0.96	9.6	0.96	9.6	0.1	9.6	69	0.95	28	16	96
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																	
BH23-2	23-2-1	0.00 - 0.76	28-Nov-23	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-3	23-3-7	4.57 - 5.33	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23-4	23-4-4D	2.29 - 3.05	28-Nov-23	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

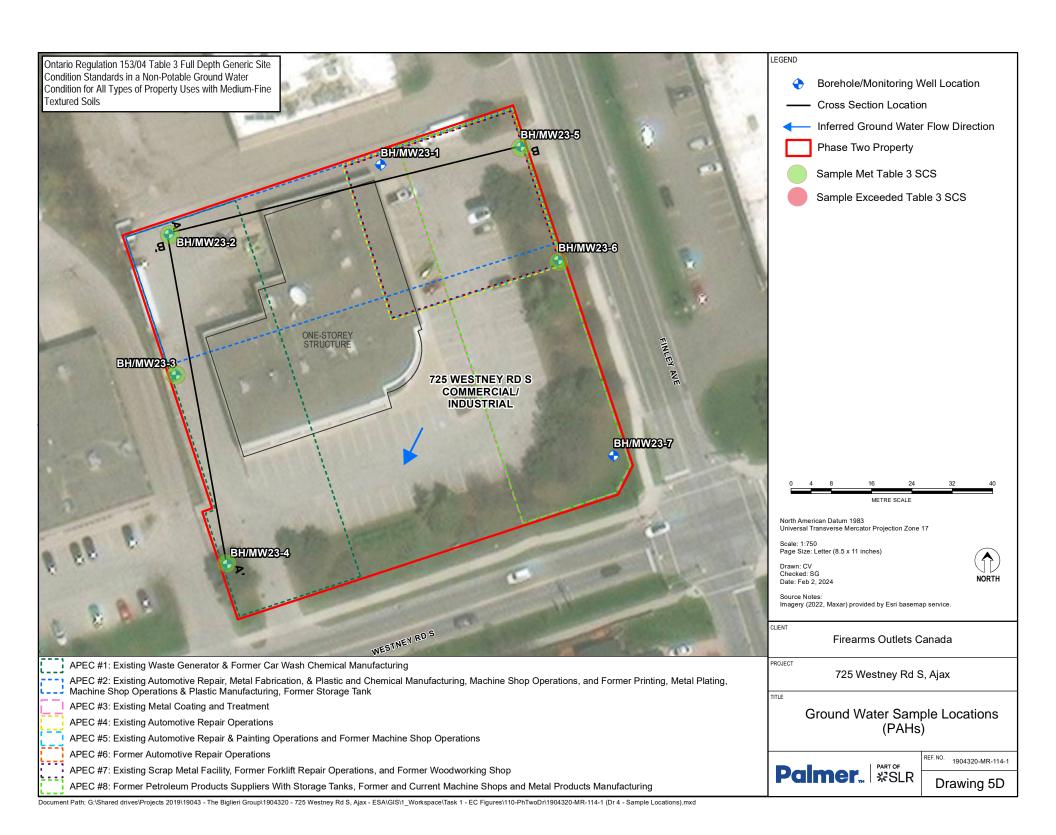
Soil Analytical R	Results: Organochlorir	ne (OC) Pesticides																
										OC	Pesticio	des						
				(EDDD (Total)	m DDE (Total)	m DDT (Total)	og Aldrin	ল জ Chlordane	ma Dieldrin	Endosulfan (Total)	re Godrin	Heptachlor	Heptachlor Epoxide	Mexachlorobenzene	ന്ത് Hexachlorobutadiene	Hexachloroethane	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	TE Methoxychlor
	MOECC Guideline (20 ine Textured Soil, No			4.6	0.65	1.4	0.11	0.05	0.11	0.38	0.04	0.19	0.05	0.66	0.095	0.43	0.063	1.6
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date															
BH23-2	23-2-2	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-2	23-2-2D	0.76 - 1.52	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	< 0.03	<0.02	< 0.02	<0.02	<0.01	<0.01	<0.01	< 0.01	<0.02
BH23-3	23-3-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02
BH23-4	23-4-4	2.29 - 3.05	28-Nov-23	<0.03	<0.03	<0.03	<0.02	<0.03	<0.02	<0.03	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02

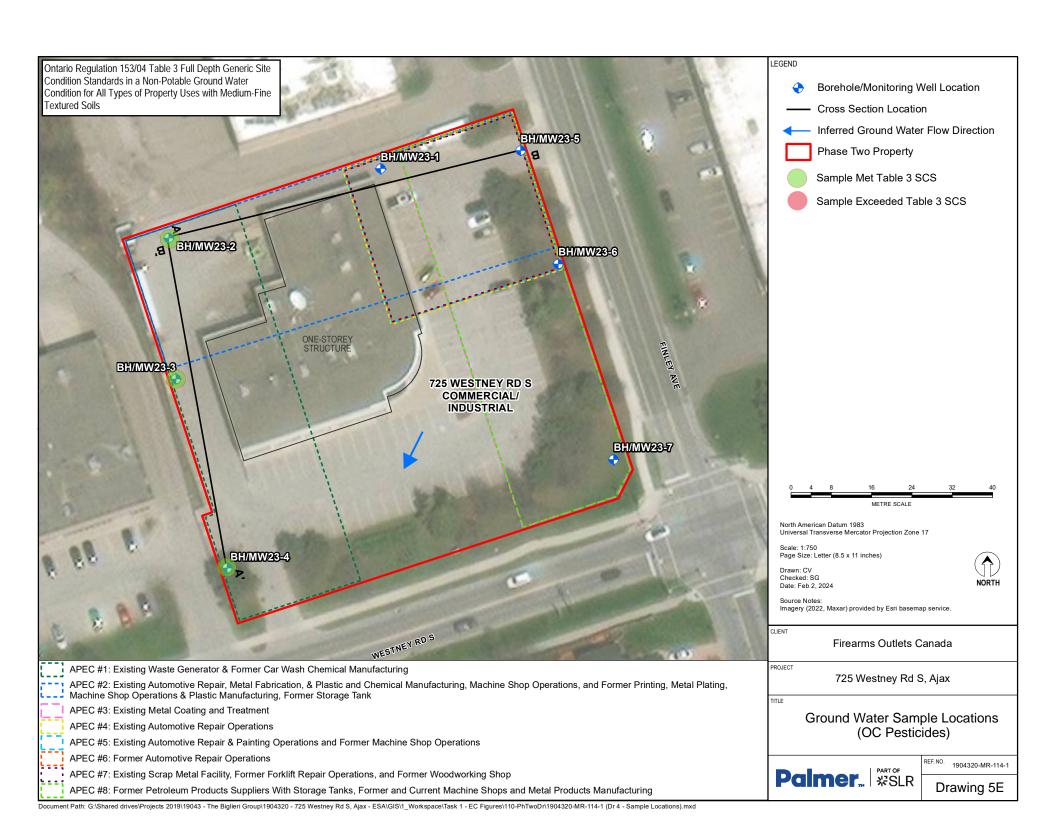


Ground Water A	nalytical Results: Pe	troleum Hydrocarbo	ns (PH	Cs) and	Benzen	e, Tolue	ne, Eth	ylbenzer	ie, Xyler	nes (BTE	X)
					PHCs				ВТ	ΈX	
			F1 (C6-C10)	F1-BTEX	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Вепzепе	Toluene	Ethylbenzene	Xylenes (Total)
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
_	IECP Guideline (201 Iedium-Fine Texture Water Condition		750	750	150	500	500	430	18000	2300	4200
Sample Location	Sample ID	Sample Date									
MW23-1	23-1	14-Dec-23	<25	<25	<100	<250	<250	< 0.50	<0.50	<0.50	<0.50
MW23-2	23-2	14-Dec-23	<25	<25	<100	<250	<250	< 0.50	<0.50	<0.50	<0.50
MW23-3	23-3	14-Dec-23	<25	<25	<100	<250	<250	< 0.50	<0.50	<0.50	<0.50
MW23-4	23-4	14-Dec-23	<25	<25	<100	<250	<250	< 0.50	<0.50	<0.50	<0.50
MW23-5	23-5	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-5	23-5D	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50
MW23-6	23-6	14-Dec-23	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50

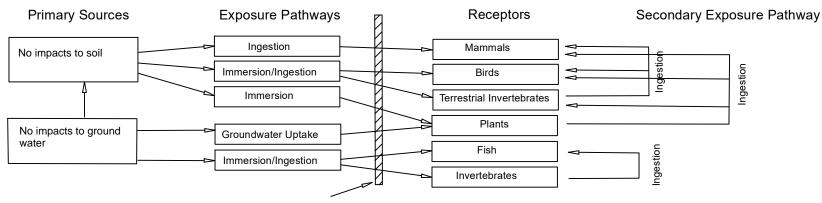


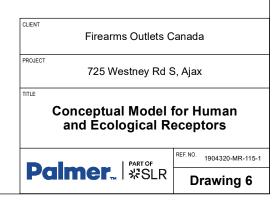
Ground Water A	Analytical Results: Vo	latile Organic Co	mpounds	(VOCs)																			
		Ĭ	r										VOCs										
			Acetone	Вепzепе	Bromodichloromethane	Вготогогт	Вголютейале	Carbon tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroform	1,2-Dibromoethane	1,2-Dichlorobenzene	1,3-Dichlorobenzane	1,4Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2-Dichloroethylene	Methylene Chloride	1,2-Dichloropropane
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
of Property Use	MECP Guideline (201 e, Medium-Fine Textu Water Condition		130000	430	85000	770	56	8.4	630	82000	22	0.83	9600	9600	67	4400	3100	12	17	17	17	5500	140
Sample Location	Sample ID	Sample Date																					
MW23-1	23-1	14-Dec-23	<20	<0.50	<0.50	< 0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	-	< 0.50
MW23-2	23-2	14-Dec-23	<20	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	< 0.50
MW23-3	23-3	14-Dec-23	<20	<0.50	<0.50	<0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	-	< 0.50
MW23-4	23-4	14-Dec-23	<20	<0.50	< 0.50	< 0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	-	< 0.50
MW23-5	23-5	14-Dec-23	<20	<0.50	< 0.50	< 0.50	<0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	-	< 0.50
MW23-5	23-5D	14-Dec-23	<20	<0.50	<0.50	< 0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	< 0.20	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	-	< 0.50
MW23-6	23-6	14-Dec-23	<20	<0.50	<0.50	< 0.50	< 0.50	<0.20	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	-	< 0.50
-	TRIPBLANK	14-Dec-23	<20	< 0.50	<0.50	< 0.50	< 0.50	<0.20	< 0.50	< 0.50	<0.50	< 0.20	< 0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	< 0.50


Ground Water A	Analytical Results: Vo	latila Organio Co	mound	· (VOCe)	\																		7
Glound Water P	marytical Results. Vo	nathe Organic Co	Inpound	s (vocs,	,								VOCs										
			cis-1,3-Dichloropropylene	trans-1,3-Dichloropropylene	1,3-Dichloropropylene (cis & trans)	Ethylbenzene	n-Hexane	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	MTBE	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	o-Xylene	m+p-Xylenes	Xylenes (Total)
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
of Property Use	MECP Guideline (201 e, Medium-Fine Textu Water Condition		-	-	45	2300	520	1500000	580000	1400	9100	28	15	17	18000	6700	30	17	2500	1.7	4200	7300000	
Sample Location	Sample ID	Sample Date																					
MW23-1	23-1	14-Dec-23	< 0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.30	<0.40	<0.50
MW23-2	23-2	14-Dec-23	< 0.30	< 0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.30	<0.40	<0.50
MW23-3	23-3	14-Dec-23	< 0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.30	<0.40	<0.50
MW23-4	23-4	14-Dec-23	< 0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.30	<0.40	<0.50
MW23-5	23-5	14-Dec-23	< 0.30	<0.30	<0.50	<0.50	<0.50	<20	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.30	<0.40	<0.50
MW23-5	23-5D	14-Dec-23	< 0.30					<20	<20	<0.50	<0.50			<0.50	<0.50		<0.50					<0.40	<0.50
MW23-6	23-6	14-Dec-23	< 0.30			<0.50		<20	<20	<0.50	<0.50		_	<0.50	<0.50		<0.50						<0.50
-	TRIPBLANK	14-Dec-23	< 0.30	< 0.30	< 0.50	< 0.50	<0.50	<20	<20	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	< 0.30	< 0.40	<0.50


Ground Water A	Analytical Results: M	etals																			
												Metals									
			Antimony (Sb)-Dissolved	Arsenic (As)-Dissolved	Barium (Ba)-Dissolved	Beryllium (Be)-Dissolved	Boron (B)-Dissolved	Cadmium (Cd)-Dissolved	Chromium (Cr)-Dissolved	Cobalt (Co)-Dissolved	Copper (Cu)-Dissolved	Lead (Pb)-Dissolved	Molybdenum (Mo)-Dissolved	Nickel (Ni)-Dissolved	Selenium (Se)-Dissolved	Silver (Ag)-Dissolved	Sodium (Na)-Dissolved	Thallium (TI)-Dissolved	Uranium (U)-Dissolved	Vanadium (V)-Dissolved	Zinc (Zn)-Dissolved
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Property Use, N	MECP Guideline (201 Medium-Fine Texture Water Condition		20000	1900	29000	67	45000	2.7	810	66	87	25	9200	490	63	1.5	2300000	510	420	250	1100
Sample Location	Sample ID	Sample Date																			
MW23-1	23-1	14-Dec-23	<1.0	<1.0	332	<0.2	109	0.338	<5.0	23.2	2.61	<0.5	12.5	19	2.74	<0.1	316000	0.12	8.18	<5.0	11.2
MW23-2	23-2	14-Dec-23	1.24	0.68	171	<0.02	160	0.122	<0.5	18.5	3.6	0.055	18.8	11.5	2.66	<0.01	119000	0.06	4.25	0.82	20.7
MW23-3	23-3	14-Dec-23	1.14	0.53	205	< 0.02	135	0.0477	<0.5	7.04	1.88	<0.05	18.8	6.62	2.3	< 0.01	262000	0.05	4.64	0.91	8.1
MW23-4	23-4	14-Dec-23	1.45	1.04	174	<0.02	180	0.0112	<0.5	0.4	3.53	<0.05	15	0.87	0.88	< 0.01	23000	0.03	2.37	1.5	13.1
MW23-5	23-5	14-Dec-23	<0.1	0.63	293	<0.02	71	0.0069	<0.5	1.3	0.39	<0.05	0.373	1.14	0.06	<0.01	26000	<0.01		0.6	2.7
MW23-5	23-5D	14-Dec-23	<0.1	0.67	295	<0.02	76	0.0073	<0.5	1.35	0.4	<0.05	0.362	1.45	0.05	<0.01	25900	<0.01	0.48	0.6	2.8
MW23-6	23-6	14-Dec-23	<1.0	<1.0	228	<0.2	233	0.189	<5.0	21.6	2.5	<0.5	4.51	36.4	0.94	<0.1	344000	0.15	13.8	<5.0	15.4


Ground Water A	analytical Results: Po	olycyclic Aromatic I	Iydrocarbo	ns (PAF	Is)																
												PAHs									
			주 Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	न Benzo(a)pyrene	हुं Benzo(b)fluoranthene	Benzo(g,h,i)perylene	ந் Benzo(k)fluoranthene	T Chrysene	ন Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	न् । +2-Methylnaphthalenes*	를 1-Methylnaphthalene	ह्व 2-Methylnaphthalene	전 Naphthalene	Phenanthrene	т. Рутепе
	MECP Guideline (201 Medium-Fine Texture Water Condition		1700	1.8	2.4	4.7	0.81	0.75	0.2	0.4	1	0.52	130	400	0.2	1800	1800	1800	6400	580	68
Sample Location	Sample ID	Sample Date																			
MW23-2	23-2	14-Dec-23	< 0.016	<0.01	<0.01	<0.01	< 0.005	<0.01	<0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-3	23-3	14-Dec-23	< 0.016	<0.01	<0.01	<0.01	<0.005	<0.01	<0.01	<0.01	<0.01	<0.005	<0.01	<0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-3	23-3D	14-Dec-23	< 0.016	<0.01	<0.01	<0.01	<0.005	<0.01	<0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	< 0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-4	23-4	14-Dec-23	< 0.016	< 0.01	<0.01	< 0.01	<0.005	< 0.01	<0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	< 0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-5	23-5	14-Dec-23	< 0.016	<0.01	<0.01	<0.01	<0.005	<0.01	<0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	<0.01
MW23-6	23-6	14-Dec-23	< 0.016	< 0.01	< 0.01	< 0.01	< 0.005	< 0.01	<0.01	<0.01	< 0.01	<0.005	<0.01	<0.01	<0.01	<0.015	<0.01	<0.01	<0.05	<0.02	< 0.01


Ground Water Analytical Results: Organochlorine (OC) Pesticides																	
									0	C Pestic	ides						
			语 DDD (Total)	를 DDE(Total)	독 DDT(Total)	Temporal Aldrin	নু T	Ta Dieldrin	편 Endosulfan (Total)	T Endrin	편 Heptachlor	ন Heptachlor Epoxide	न Hexachlorobenzene	Hexachlorobutacliene	Hexachloroethane	Hexachlorocyclohexane Gamma Clindane or Gamma BHC)	ন Methoxychlor
	IECP Guideline (201 Iedium-Fine Textured Water Condition		45	20	2.8	8.5	28	0.75	1.5	0.48	2.5	0.048	3.1	4.5	200	1.2	6.5
Sample Location	Sample ID	Sample Date															
MW23-2	23-2	14-Dec-23	<0.006	< 0.004	< 0.006	<0.008	< 0.011	<0.008	< 0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-3	23-3	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	<0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	<0.01	<0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
MW23-4	23-4D	14-Dec-23	<0.006	< 0.004	<0.006	<0.008	< 0.011	<0.008	< 0.01	< 0.01	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008


Human Receptors and Exposure Pathways

Ecological Receptors and Exposure Pathways

Receptor pathways are incomplete as no evidence of soil or ground water contamination was identified during the Phase Two Environmental Site Assessment.

Photographs

Photograph Log Firearms Outlets Canada 725 Westney Road South, Ajax, Ontario Project No.: 1904320

Photograph 1

Photo depicts view of Drill Rig at BH23-4.

Photograph 2

Photo depicts location of BH23-2.

Photograph 3

Photo depicts northwest portion of property.

Photograph 4

Photo depicts location of MW23-6.



Photograph Log Firearms Outlets Canada 725 Westney Road South, Ajax, Ontario Project No.: 1904320

Photograph 5

Photo depicts location of MW23-7.

Photograph 6

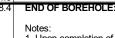
Photo depicts location of BH23-3.

Appendix A – General A1 – Sampling and Analysis Plan

Phase Two ESA Sampling and Analysis Plan

Site: 725 Westney Road South, Ajax Project #:1904320

Location ID	Media	Sample No.	Approximate Depth (m)	Date of Sample Collection	Date of Analysis	Chemical Analyses	Purpose and Justification
BH/MW23-1	Soil	23-1-4	2.29 - 3.05	November 28, 2023	December 5, 2023	Metals, As, Sb, Se	Collected to verify and/or refute APECs 2
		23-1-6	4.57 – 5.33	November 28, 2023	December 1, 2023	PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 2, 4, 5, 6 and 7.
		23-1-7	6.10 - 6.86	November 28, 2023	December 7, 2023	Grain Size	Soil sample which represents the property used to determine the grain size.
	GW	23-1	N/A	December 14, 2023	December 22, 2023	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 1, 2, 4, 5, 6 and 7.
		23-2-1	0.00 - 0.76		December 2, 2023	PAHs, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 1 and 2.
	Soil	23-2-2 23-2-2D	0.76 - 1.52	November 28, 2023	December 3, 2023	OC Pesticides	Collected to verify and/or refute APEC 1. QA/QC. Duplicate sample of 23-2-2.
BH/MW23-2		23-2-4	2.29 – 3.05		December 4, 2023	Metals, As, Sb, Se	Collected to verify and/or refute APECs 1 and 2.
		23-2-4D					QA/QC. Duplicate sample of 23-2-4.
	GW	V 23-2 N/A		December 14, 2023	December 20, 2023	Metals, As, Sb, Se, OC Pesticides, PAHs, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 1 and 2.
	Soil	23-3-4	2.29 – 3.05	November 28, 2023	December 3, 2023	Metals, As, Sb, Se, OC Pesticides	Collected to verify and/or refute APEC 1.
		23-3-7	4.57 - 5.33		December 3, 2023	PAHs, PHCs, VOCs	Collected to verify and/or refute APEC 1.
BH/MW23-3	GW	23-3	N/A	December 14, 2023	December 20, 2023	Metals, As, Sb, Se, OC Pesticides, PAHs, PHCs, VOCs	Collected to verify and/or refute APEC 1.
		23-3D			December 20, 2023	PAHs	QA/QC. Duplicate sample of 23-3.
	Soil	23-4-4	2.29 – 3.05	November 28, 2023	December 4, 2023	Metals, As, Sb, Se, OC Pesticides, PAHs, PHCs, VOCs	Collected to verify and/or refute APEC 1.
BH/MW23-4		23-4-4D			December 3, 2023	PAHs	QA/QC. Duplicate sample of 23-4-4.
DIM 111 11 20-7	GW	23-4	N/A	December 14, 2023	December 20, 2023	Metals, As, Sb, Se, OC Pesticides, PAHs, PHCs, VOCs	Collected to verify and/or refute APEC 1.
		23-4D			December 20, 2023	OC Pesticides	QA/QC. Duplicate sample of 23-4.


Phase Two ESA Sampling and Analysis Plan

	Soil	23-5-3	1.52 – 2.29	November 28, 2023	December 3, 2023	Metals, As, Sb, Se, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 2
		23-5-3D			December 3, 2023	PHCs, BTEX, VOCs	QA/QC. Duplicate sample of 23-5-3.
BH/MW23-5	GW	23-5	N/A	December 14, 2023	December 18, 2023	Metals, As, Sb, Se, PAHs, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 2, 3, 4, 5, 6, 7 and 8.
	23-				December 18, 2023	Metals, As, Sb, Se, PHCs, BTEX, VOCs	QA/QC. Duplicate sample of 23-5.
MW23-6	GW	23-6	N/A	December 14, 2023	December 18, 2023	Metals, As, Sb, Se, PAHs, PHCs, BTEX, VOCs	Collected to verify and/or refute APECs 3, 4, 5, 6, 7 and 8.
Site	GW	Trip Blank	N/A	December 14, 2023	December 18, 2023	VOCs	QA/QC.

Appendix A – General A2 – Finalized Field Logs

Palmer... **LOG OF BOREHOLE BH23-1** 1 OF 1 PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320 Method: Solid Stem Auger CLIENT: Firearms Outlets Canada Inc. ENCL NO.: 1 PROJECT LOCATION: Town of Ajax, ON Diameter: 150 mm ORIGINATED BY SG DATUM: Geodetic Date: Nov-28-2023 BH LOCATION: N 4854841.217 E 658696.877 CHECKED BY ΚN SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) SAMPLE REMARKS (ppm) CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS DESCRIPTION** NUMBER 15 20 25 92.4 Ground Surface FILL: clayey silt, trace gravel and cobbles, brown, moist Concrete SS 0.8 FILL: sandy silt, trace clay, trace gravel and cobbles 2 SS 3 SS -Bentonite : some odour, black staining Analysis: ICPMS SS 4 Metals 5 SS 88.6 SANDY SILT: trace gravel and 3.8 cobbles, gray, moist Analysis: PHCs/BTEX, : some odour 6 SS VOCs -Sand W. L. 86.4 m Dec 14, 2023 Analysis: Gravimetic Sieve & SS Hydrometer

: wet

1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon

completion of drilling.

3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 5.94 mBGS

8 SS Palmer... **LOG OF BOREHOLE BH23-2** 1 OF 1 PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320 Method: Solid Stem Auger CLIENT: Firearms Outlets Canada Inc. ENCL NO.: 2 PROJECT LOCATION: Town of Ajax, ON Diameter: 150 mm ORIGINATED BY SG DATUM: Geodetic Date: Nov-28-2023 BH LOCATION: N 4854827.456 E 658654.784 CHECKED BY ΚN SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS DESCRIPTION** NUMBER 20 25 92.2 Ground Surface **FILL:** sand and gravel, trace silt, moist -Concrete Analysis: PAHs, PHCs/BTEX, SS : some odour VOCs 91.4 FILL: clayey silt, trace gravel and cobbles, brown, moist 0.8 Analysis: OC Pesticides & Dup 2 SS 90.7 FILL: silty clay, trace organics and cobbles, brown, dry 3 SS Analysis: ICPMS SS 4 Metals & Dup -Bentonite SS 5 **CLAYEY SILT:** trace gravel and 3.8 cobbles, gray, moist SANDY SILT: trace clay, trace gravel, gray, moist 6 SS SS -Sand -Screen SS 8 W. L. 83.9 m Dec 14, 2023 9 SS **END OF BOREHOLE:** Notes: 1. Upon completion of drilling, one

50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon completion of drilling.3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 8.27 mBGS

PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320 Method: Solid Stem Auger CLIENT: Firearms Outlets Canada Inc. ENCL NO.: 3 ORIGINATED BY SG PROJECT LOCATION: Town of Ajax, ON Diameter: 150 mm DATUM: Geodetic Date: Nov-28-2023 BH LOCATION: N 4854799.502 E 658656.195 CHECKED BY ΚN SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS DESCRIPTION** NUMBER 15 20 25 91.5 Ground Surface FILL: sand and gravel, some cobbles, gray -Concrete SS SS 2 90.0 FILL: silty clay, trace gravel, brown 3 SS : moist Analysis: ICPMS SS 4 Metals, OC Pesticides -Bentonite SS 5 SANDY SILT: trace boulders and cobbles, transition to gray, moist 6 SS Analysis: PAHs, SS PHC/BTEX, VOCs 8 SS Analysis: pH SS 9 -Sand -Screen W. L. 83.8 m Dec 14, 2023 10 SS SS END OF BOREHOLE: Notes: 1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon completion of drilling.3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 7.73 mBGS

Palmer... **LOG OF BOREHOLE BH23-4** 1 OF 1 PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320 CLIENT: Firearms Outlets Canada Inc. Method: Solid Stem ENCL NO.: 4 ORIGINATED BY SG PROJECT LOCATION: Town of Ajax, ON Auger Diameter: 150 mm DATUM: Geodetic Date: Nov-28-2023 BH LOCATION: N 4854761.968 E 658666.362 CHECKED BY ΚN SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) (ppm) SAMPLE REMARKS AND CONSTRUCTION ELEV DEPTH REMARKS **DETAILS DESCRIPTION** NUMBER 20 25 91.2 Ground Surface FILL: clayey silt, trace gravel and sand, brown, moist Concrete SS 2 SS 3 SS -Bentonite Analysis: ICPMS Metals, OC SS Pesticides, PAHs, 4 PHCs/BTEX, VOCs & PAH Dup ³ 88.1 3.1 SANDY SILT: trace gravel, gray, moist 5 SS 6 SS -Sand Screen W. L. 85.1 m Dec 14, 2023 SS

END OF BOREHOLE: Notes:

1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon

completion of drilling.

3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 6.12 mBGS

8 SS

REF. NO.: 1904320

PROJECT: Phase Two ESA 725 Westney Road South

CLIENT: Firearms Outlets Canada Inc. Method: Solid Stem ENCL NO.: 5 PROJECT LOCATION: Town of Ajax, ON ORIGINATED BY SG Auger Diameter: 150 mm DATUM: Geodetic Date: Nov-28-2023 BH LOCATION: N 4854844.853 E 658725.42 CHECKED BY ΚN SOIL PROFILE SAMPLES Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) SAMPLE REMARKS (ppm) CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS DESCRIPTION** NUMBER 20 25 92.6 Ground Surface FILL: clayey silt, trace sand and gravel, brown, dry N Concrete SS Analysis: pH & 2 SS : some odour, black staining Dup Analysis: ICPMS Metals, PHCs/BTEX, 90.6 : some odour, black staining 3 SS VOCs & ² 1.9 PHC/BTEX/VOC -Bentonite Dup SS 4 5 SS 88.7 SANDY SILT: trace gravel, grey, 3.8 moist 6 SS -Sand Screen W. L. 86.5 m Dec 14, 2023 SS 8 SS : wet END OF BOREHOLE: Notes: 1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon completion of drilling. 3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 6.10 mBGS

PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320

CLIENT: Firearms Outlets Canada Inc.

Method: Solid Stem Auger

ENCL NO.: 6

PROJECT LOCATION: Town of Ajax, ON

Diameter: 150 mm

ORIGINATED BY

SG

DATUM: Geodetic Date: Nov-28-2023

<u> </u>	OCATION: N 4854822.608 E 658732.32	23										CHE	CKED B	Y KN
	SOIL PROFILE		SAM	IPLES		H	ead S	расе	Comb	ustib	le		.	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	SAMPLE REMARKS	Vapor Reading (ppm)			LABORATORY ANALYSIS AND REMARKS	WELL CONSTRUCTION DETAILS				
92.5	Ground Surface		₽	Ξ			5 1	0 1	5 20) 2	25		GROUND WATER CONDITIONS	
- - - - - - - - - - - -	No sample collected, Straight Auger for Well Installation:												X X	Concrete
- - - 2 - - - - -														-Bentonite
_3 - - - - - - - - - - - - - - - - -						-								
- - - - - - - - - - -						-								
- - - - - - - - -						-								
- - - - - - - -						-							1:: [-] :: [-Sand -Screen
8 8						-								W. L. 84.2 m
83.9 8.7	END OF BOREHOLE: Notes: 1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon completion of drilling. 3. Water Level Readings: Date: December 14, 2023 W. L. Depth: 8.39 mBGS		-											Dec 14, 2023

PROJECT: Phase Two ESA 725 Westney Road South REF. NO.: 1904320

CLIENT: Firearms Outlets Canada Inc.

Method: Solid Stem Auger

ENCL NO.: 7

PROJECT LOCATION: Town of Ajax, ON

Diameter: 150 mm

ORIGINATED BY

SG

DATUM: Geodetic Date: Nov-28-2023

BH LOCATION: N 4854783.544 E 658743.108 CHECKED BY KN

BH L	OCATION: N 4854783.544 E 658743.10	8										CHE	CKED B	y KN
	SOIL PROFILE		SAM	IPLES		Н	ead S	pace	Comb	oustib	le		_	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Ä	SAMPLE REMARKS	Head Space Combustible Vapor Reading (ppm)			LABORATORY ANALYSIS AND REMARKS	GROUND WATER CONDITIONS	WELL CONSTRUCTION DETAILS			
92.4	Ground Surface		Ŋ	TYPE			5 1	0 1	5 20) 2	25		GR CO	
- - - - - - - - -	No sample collected, Straight Auger for Well Installation:					-								Concrete
- - - - - - - - - - -						-								
- - - - - - 3 - -						-								Bentonite
						-								
						-								
- - - 6						-								
- - - - - - - -														Sand Screen
8						-								
83.7 8.7	END OF BOREHOLE: Notes: 1. Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole. 2. Borehole was open upon completion of drilling. 3. Water Level Readings: Date: December 14, 2023		_											W. L. 83.8 m Dec 14, 2023
5-PALMER ITW-SOLAN	Date: December 14, 2023 W. L. Depth: 8.62 mBGS				GRAPH _ 3	×3. N				- 001		at Faillure		

Appendix A – General A3 – Certificates of Analysis or Analytical Reports from Laboratories

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : **WT2338972** Page : 1 of 22

Client : Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz : Andrew Martin

: 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

 Telephone
 : -- Telephone
 : +1 519 886 6910

 Project
 : 1904320
 Date Samples Received
 : 29-Nov-2023 13:55

PO : ---- Date Analysis Commenced : 30-Nov-2023 C-O-C number : ---- Issue Date : 07-Dec-2023 15:53

Sampler : SB Site : Aiax. ON

Quote number : WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received : 17

No. of samples analysed : 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Metals, Waterloo, Ontario
Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Josphin Masihi	Analyst	Centralized Prep, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

Page : 2 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
mg/kg	milligrams per kilogram
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page : 3 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

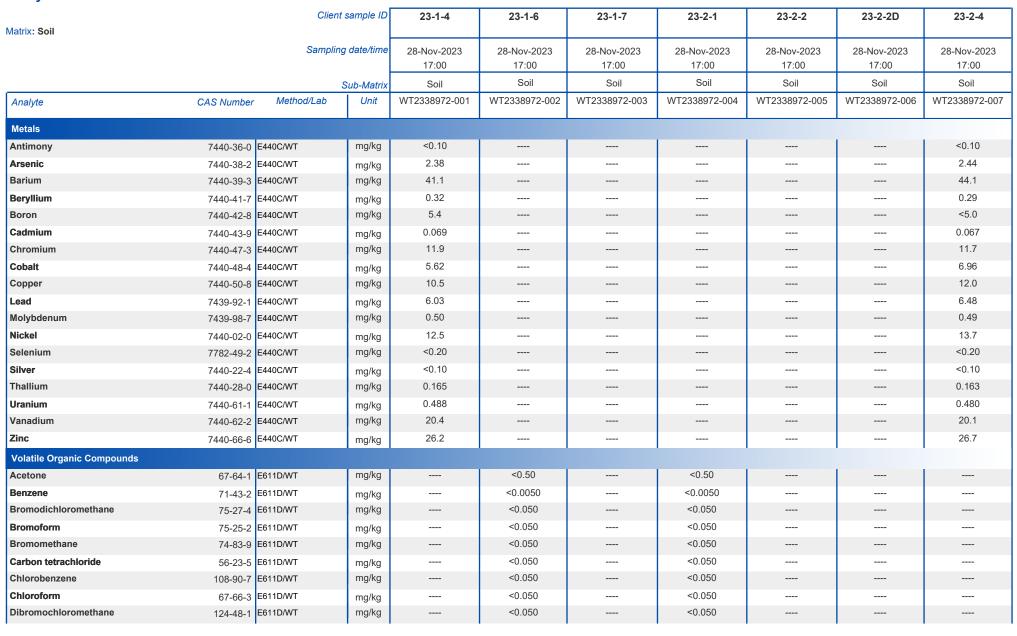
Qualifiers

Qualifier	Description
SUR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for
	associated samples were deemed to be unaffected.

Page : 4 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

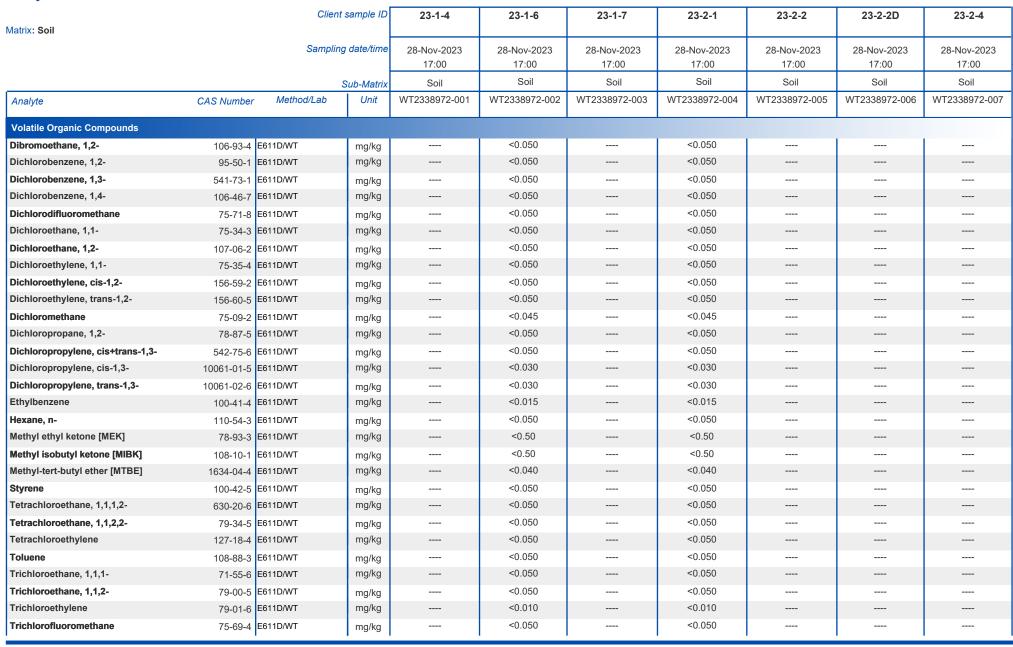
Project : 1904320



Maria Call		Client	sample ID	23-1-4	23-1-6	23-1-7	23-2-1	23-2-2	23-2-2D	23-2-4
Matrix: Soil		Sampling	ı date/time	28-Nov-2023 17:00						
		\$	Sub-Matrix	Soil						
Analyte	CAS Number	Method/Lab	Unit	WT2338972-001	WT2338972-002	WT2338972-003	WT2338972-004	WT2338972-005	WT2338972-006	WT2338972-007
Physical Tests										
Moisture		E144/WT	%		8.49		8.98	8.55	8.45	
Particle Size										
Grain size curve		E185/SK	-			See Attached				
Percent Passing										
Passing (9.5mm)		E181/SK	%			100				
Passing (4.75mm)		E181/SK	%			100				
Passing (19mm)		E181/SK	%			100				
Passing (25.4mm)		E181/SK	%			100				
Passing (38.1mm)		E181/SK	%			100				
Passing (50.8mm)		E181/SK	%			100				
Passing (76.2mm)		E181/SK	%			100				
Passing (1.0mm)		E182/SK	%			94.1				
Passing (0.841mm)		E182/SK	%			93.0				
Passing (0.50mm)		E182/SK	%			87.8				
Passing (0.420mm)		E182/SK	%			86.4				
Passing (0.250mm)		E182/SK	%			78.4				
Passing (0.149mm)		E182/SK	%			68.3				
Passing (0.125mm)		E182/SK	%			63.7				
Passing (0.075mm)		E182/SK	%			54.2				
Passing (0.063mm)		E182/SK	%			49.6				
Passing (0.05mm)		E182/SK	%			44.7				
Passing (0.0312mm)		E183/SK	%			38.6				
Passing (0.020mm)		E183/SK	%			34.0				
Passing (0.005mm)		E183/SK	%			22.0				
Passing (0.004mm)		E183/SK	%			19.9				
Passing (0.002mm)		E183/SK	%			14.4				
Passing (2.0mm)		E181/SK	%			100				

Page : 5 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.


Project : 1904320

Page : 6 of 22 Work Order : WT2338972

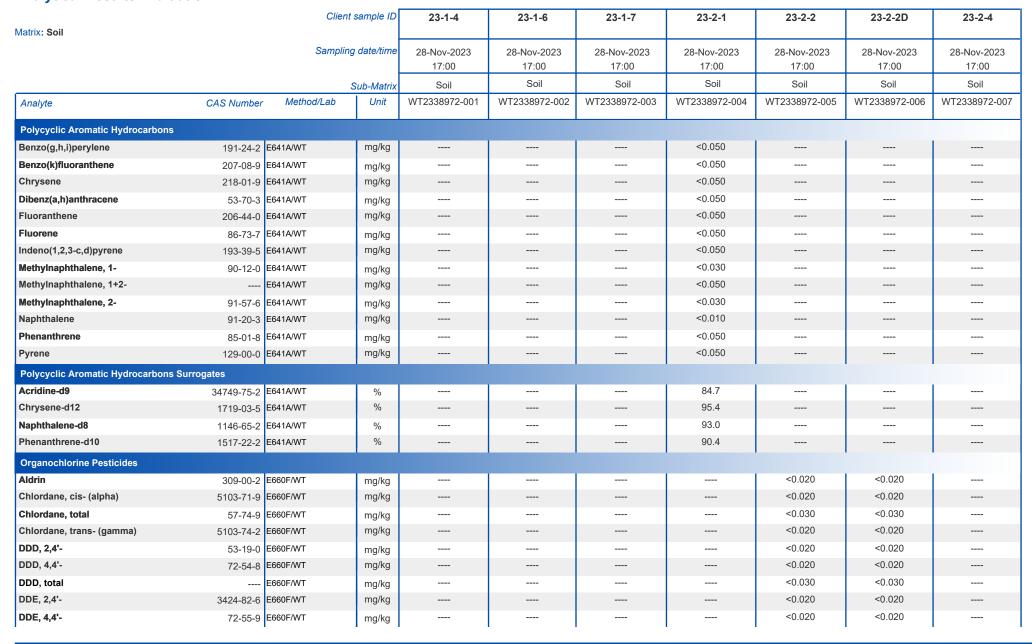
Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 7 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project 1904320 Analytical Results Evaluation



Matrix: Soil		Client	sample ID	23-1-4	23-1-6	23-1-7	23-2-1	23-2-2	23-2-2D	23-2-4
iviauix. 30ii		Sampling	ı date/time	28-Nov-2023 17:00						
			Sub-Matrix	Soil						
Analyte	CAS Number	Method/Lab	Unit	WT2338972-001	WT2338972-002	WT2338972-003	WT2338972-004	WT2338972-005	WT2338972-006	WT2338972-007
Volatile Organic Compounds										
Vinyl chloride	75-01-4	E611D/WT	mg/kg		<0.020		<0.020			
Xylene, m+p-	179601-23-1	E611D/WT	mg/kg		<0.030		<0.030			
Xylene, o-	95-47-6	E611D/WT	mg/kg		<0.030		<0.030			
Xylenes, total	1330-20-7	E611D/WT	mg/kg		<0.050		<0.050			
BTEX, total		E611D/WT	mg/kg		<0.10		<0.10			
Hydrocarbons										
F1 (C6-C10)		E581.F1/WT	mg/kg		<5.0		<5.0			
F2 (C10-C16)		E601.SG-L/WT	mg/kg		19		<10			
F2-Naphthalene		EC600/WT	mg/kg				<25			
F3 (C16-C34)		E601.SG-L/WT	mg/kg		69		<50			
F3-PAH	n/a	EC600/WT	mg/kg				<50			
F4 (C34-C50)		E601.SG-L/WT	mg/kg		<50		<50			
F1-BTEX		EC580/WT	mg/kg		<5.0		<5.0			
Hydrocarbons, total (C6-C50)	n/a	EC581/WT	mg/kg		88		<80			
Chromatogram to baseline at nC50	n/a	E601.SG-L/WT	-		YES		YES			
Hydrocarbons Surrogates										
Bromobenzotrifluoride, 2- (F2-F4 surrogate	e) 392-83-6	E601.SG-L/WT	%		85.2		84.4			
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WT	%		125		139			
Volatile Organic Compounds Surrogates										
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%		104		105			
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%		100		99.5			
Polycyclic Aromatic Hydrocarbons										
Acenaphthene	83-32-9	E641A/WT	mg/kg				<0.050			
Acenaphthylene	208-96-8	E641A/WT	mg/kg				<0.050			
Anthracene	120-12-7	E641A/WT	mg/kg				<0.050			
Benz(a)anthracene	56-55-3	E641A/WT	mg/kg				<0.050			
Benzo(a)pyrene	50-32-8	E641A/WT	mg/kg				<0.050			
Benzo(b+j)fluoranthene	n/a	E641A/WT	mg/kg				<0.050			

Page : 8 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 9 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results Evaluation

		Client	sample ID	23-1-4	23-1-6	23-1-7	23-2-1	23-2-2	23-2-2D	23-2-4
Matrix: Soil		Sampling	date/time	28-Nov-2023 17:00						
		S	Sub-Matrix	Soil						
Analyte	CAS Number	Method/Lab	Unit	WT2338972-001	WT2338972-002	WT2338972-003	WT2338972-004	WT2338972-005	WT2338972-006	WT2338972-007
Organochlorine Pesticides										
DDE, total		E660F/WT	mg/kg					<0.030	<0.030	
DDT, 2,4'-	789-02-6	E660F/WT	mg/kg					<0.020	<0.020	
DDT, 4,4'-	50-29-3	E660F/WT	mg/kg					<0.020	<0.020	
DDT, total		E660F/WT	mg/kg					<0.030	<0.030	
Dieldrin	60-57-1	E660F/WT	mg/kg					<0.020	<0.020	
Endosulfan, alpha-	959-98-8	E660F/WT	mg/kg					<0.020	<0.020	
Endosulfan, beta-	33213-65-9	E660F/WT	mg/kg					<0.020	<0.020	
Endosulfan, total		E660F/WT	mg/kg					<0.030	<0.030	
Endrin	72-20-8	E660F/WT	mg/kg					<0.020	<0.020	
Heptachlor	76-44-8	E660F/WT	mg/kg					<0.020	<0.020	
Heptachlor epoxide	1024-57-3	E660F/WT	mg/kg					<0.020	<0.020	
Hexachlorobenzene	118-74-1	E660F/WT	mg/kg					<0.010	<0.010	
Hexachlorobutadiene	87-68-3	E660F/WT	mg/kg					<0.010	<0.010	
Hexachlorocyclohexane, gamma-	58-89-9	E660F/WT	mg/kg					<0.010	<0.010	
Hexachloroethane	67-72-1	E660F/WT	mg/kg					<0.010	<0.010	
Methoxychlor	72-43-5	E660F/WT	mg/kg					<0.020	<0.020	
Organochlorine Pesticides Surrogates										
Decachlorobiphenyl	2051-24-3	E660F/WT	%					134	162 SUR-ND	
Tetrachloro-m-xylene	877-09-8	E660F/WT	%					97.2	102	

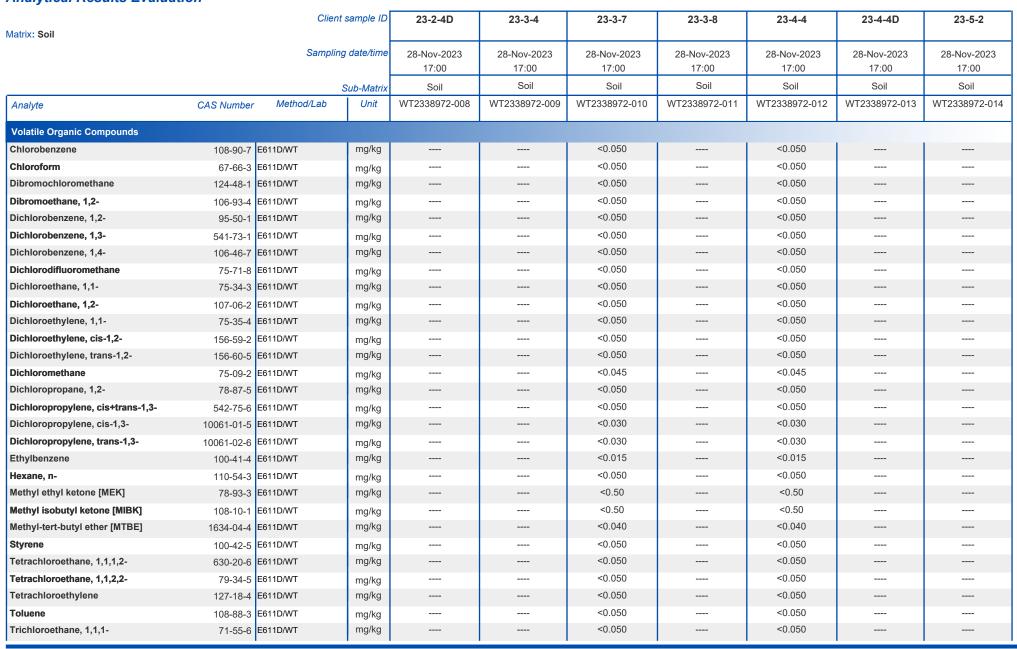
Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 10 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320


ALS

Matrix: Sail		Client	sample ID	23-2-4D	23-3-4	23-3-7	23-3-8	23-4-4	23-4-4D	23-5-2
Matrix: Soil		Sampling	g date/time	28-Nov-2023 17:00						
		:	Sub-Matrix	Soil						
Analyte	CAS Number		Unit	WT2338972-008	WT2338972-009	WT2338972-010	WT2338972-011	WT2338972-012	WT2338972-013	WT2338972-014
Physical Tests										
Moisture		E144/WT	%		8.85	9.38		8.68	8.13	
pH (1:2 soil:CaCl2-aq)		E108A/WT	pH units				7.93			7.95
Metals										
Antimony	7440-36-0	E440C/WT	mg/kg	<0.10	<0.10			<0.10		
Arsenic	7440-38-2	E440C/WT	mg/kg	2.62	2.19			2.63		
Barium	7440-39-3	E440C/WT	mg/kg	48.0	61.0			60.1		
Beryllium	7440-41-7	E440C/WT	mg/kg	0.29	0.29			0.30		
Boron	7440-42-8	E440C/WT	mg/kg	5.1	6.0			6.6		
Cadmium	7440-43-9	E440C/WT	mg/kg	0.071	0.085			0.078		
Chromium	7440-47-3	E440C/WT	mg/kg	13.2	12.2			12.0		
Cobalt	7440-48-4	E440C/WT	mg/kg	7.70	5.39			7.07		
Copper	7440-50-8	E440C/WT	mg/kg	11.9	9.76			10.0		
Lead	7439-92-1	E440C/WT	mg/kg	6.62	5.52			6.63		
Molybdenum	7439-98-7	E440C/WT	mg/kg	0.55	0.32			0.53		
Nickel	7440-02-0	E440C/WT	mg/kg	16.2	11.5			16.0		
Selenium	7782-49-2	E440C/WT	mg/kg	<0.20	<0.20			<0.20		
Silver	7440-22-4	E440C/WT	mg/kg	<0.10	<0.10			<0.10		
Thallium	7440-28-0	E440C/WT	mg/kg	0.200	0.132			0.178		
Uranium	7440-61-1	E440C/WT	mg/kg	0.523	0.485			0.589		
Vanadium	7440-62-2	E440C/WT	mg/kg	22.3	22.5			22.1		
Zinc	7440-66-6	E440C/WT	mg/kg	28.0	27.9			28.5		
Volatile Organic Compounds										
Acetone	67-64-1	E611D/WT	mg/kg			<0.50		<0.50		
Benzene	71-43-2	E611D/WT	mg/kg			<0.0050		<0.0050		
Bromodichloromethane	75-27-4	E611D/WT	mg/kg			<0.050		<0.050		
Bromoform	75-25-2	E611D/WT	mg/kg			<0.050		<0.050		
Bromomethane	74-83-9	E611D/WT	mg/kg			<0.050		<0.050		
Carbon tetrachloride	56-23-5	E611D/WT	mg/kg			<0.050		<0.050		

Page : 11 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 12 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

		Client	sample ID	23-2-4D	23-3-4	23-3-7	23-3-8	23-4-4	23-4-4D	23-5-2
Matrix: Soil										
		Sampling	date/time	28-Nov-2023						
				17:00	17:00	17:00	17:00	17:00	17:00	17:00
			Sub-Matrix	Soil						
Analyte	CAS Number	Method/Lab	Unit	WT2338972-008	WT2338972-009	WT2338972-010	WT2338972-011	WT2338972-012	WT2338972-013	WT2338972-014
Volatile Organic Compounds										
Trichloroethane, 1,1,2-	79-00-5	E611D/WT	mg/kg			<0.050		<0.050		
Trichloroethylene	79-01-6	E611D/WT	mg/kg			<0.010		<0.010		
Trichlorofluoromethane	75-69-4	E611D/WT	mg/kg			<0.050		<0.050		
Vinyl chloride	75-01-4	E611D/WT	mg/kg			<0.020		<0.020		
Xylene, m+p-	179601-23-1	E611D/WT	mg/kg			<0.030		<0.030		
Xylene, o-	95-47-6	E611D/WT	mg/kg			<0.030		<0.030		
Xylenes, total	1330-20-7	E611D/WT	mg/kg			<0.050		<0.050		
BTEX, total		E611D/WT	mg/kg			<0.10		<0.10		
Hydrocarbons										
F1 (C6-C10)		E581.F1/WT	mg/kg			<5.0		<5.0		
F2 (C10-C16)		E601.SG-L/WT	mg/kg			19		<10		
F2-Naphthalene		EC600/WT	mg/kg			<25		<25		
F3 (C16-C34)		E601.SG-L/WT	mg/kg			58		<50		
F3-PAH	n/a	EC600/WT	mg/kg			58		<50		
F4 (C34-C50)		E601.SG-L/WT	mg/kg			<50		<50		
F1-BTEX		EC580/WT	mg/kg			<5.0		<5.0		
Hydrocarbons, total (C6-C50)	n/a	EC581/WT	mg/kg			<80		<80		
Chromatogram to baseline at nC50	n/a	E601.SG-L/WT	-			YES		YES		
Hydrocarbons Surrogates										
Bromobenzotrifluoride, 2- (F2-F4 surrogate	e) 392-83-6	E601.SG-L/WT	%			84.6		88.4		
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WT	%			131		90.8		
Volatile Organic Compounds Surrogates										
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%			101		109		
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%			97.6		106		
Polycyclic Aromatic Hydrocarbons										
Acenaphthene	83-32-9	E641A/WT	mg/kg			<0.050		<0.050	<0.050	
Acenaphthylene	208-96-8	E641A/WT	mg/kg			<0.050		<0.050	<0.050	
Anthracene	120-12-7	E641A/WT	mg/kg			<0.050		<0.050	<0.050	

Page : 13 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 14 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

Analytical Results Evaluation

		Client	sample ID	23-2-4D	23-3-4	23-3-7	23-3-8	23-4-4	23-4-4D	23-5-2
Matrix: Soil			-							
		Sampling	date/time	28-Nov-2023 17:00						
		S	ub-Matrix	Soil						
Analyte	CAS Number	Method/Lab	Unit	WT2338972-008	WT2338972-009	WT2338972-010	WT2338972-011	WT2338972-012	WT2338972-013	WT2338972-014
Organochlorine Pesticides										
DDD, total		E660F/WT	mg/kg		<0.030			<0.030		
DDE, 2,4'-	3424-82-6	E660F/WT	mg/kg		<0.020			<0.020		
DDE, 4,4'-	72-55-9	E660F/WT	mg/kg		<0.020			<0.020		
DDE, total		E660F/WT	mg/kg		<0.030			<0.030		
DDT, 2,4'-	789-02-6	E660F/WT	mg/kg		<0.020			<0.020		
DDT, 4,4'-	50-29-3	E660F/WT	mg/kg		<0.020			<0.020		
DDT, total		E660F/WT	mg/kg		<0.030			<0.030		
Dieldrin	60-57-1	E660F/WT	mg/kg		<0.020			<0.020		
Endosulfan, alpha-	959-98-8	E660F/WT	mg/kg		<0.020			<0.020		
Endosulfan, beta-	33213-65-9	E660F/WT	mg/kg		<0.020			<0.020		
Endosulfan, total		E660F/WT	mg/kg		<0.030			<0.030		
Endrin	72-20-8	E660F/WT	mg/kg		<0.020			<0.020		
Heptachlor	76-44-8	E660F/WT	mg/kg		<0.020			<0.020		
Heptachlor epoxide	1024-57-3	E660F/WT	mg/kg		<0.020			<0.020		
Hexachlorobenzene	118-74-1	E660F/WT	mg/kg		<0.010			<0.010		
Hexachlorobutadiene	87-68-3	E660F/WT	mg/kg		<0.010			<0.010		
Hexachlorocyclohexane, gamma-	58-89-9	E660F/WT	mg/kg		<0.010			<0.010		
Hexachloroethane	67-72-1	E660F/WT	mg/kg		<0.010			<0.010		
Methoxychlor	72-43-5	E660F/WT	mg/kg		<0.020			<0.020		
Organochlorine Pesticides Surrogates										
Decachlorobiphenyl	2051-24-3	E660F/WT	%		146			97.2		
Tetrachloro-m-xylene	877-09-8	E660F/WT	%		97.8			79.1		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 15 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

-		Client	sample ID	23-5-2D	23-5-3	23-5-3D	 	
Matrix: Soil								
		Sampling	g date/time	28-Nov-2023 17:00	28-Nov-2023 17:00	28-Nov-2023 17:00	 	
			Sub-Matrix	Soil	Soil	Soil	 	
Analyte	CAS Number	Method/Lab	Unit	WT2338972-015	WT2338972-016	WT2338972-017	 	
Physical Tests								
Moisture		E144/WT	%		7.47	7.50	 	
pH (1:2 soil:CaCl2-aq)		E108A/WT	pH units	7.97			 	
Metals								
Antimony	7440-36-0	E440C/WT	mg/kg		<0.10		 	
Arsenic	7440-38-2	E440C/WT	mg/kg		2.89		 	
Barium	7440-39-3	E440C/WT	mg/kg		76.4		 	
Beryllium	7440-41-7	E440C/WT	mg/kg		0.33		 	
Boron	7440-42-8	E440C/WT	mg/kg		6.7		 	
Cadmium	7440-43-9	E440C/WT	mg/kg		0.080		 	
Chromium	7440-47-3	E440C/WT	mg/kg		14.0		 	
Cobalt	7440-48-4	E440C/WT	mg/kg		8.41		 	
Copper	7440-50-8	E440C/WT	mg/kg		11.8		 	
Lead	7439-92-1	E440C/WT	mg/kg		9.09		 	
Molybdenum	7439-98-7	E440C/WT	mg/kg		0.82		 	
Nickel	7440-02-0	E440C/WT	mg/kg		19.9		 	
Selenium	7782-49-2	E440C/WT	mg/kg		<0.20		 	
Silver	7440-22-4	E440C/WT	mg/kg		<0.10		 	
Thallium	7440-28-0	E440C/WT	mg/kg		0.265		 	
Uranium	7440-61-1	E440C/WT	mg/kg		0.572		 	
Vanadium	7440-62-2	E440C/WT	mg/kg		22.6		 	
Zinc	7440-66-6	E440C/WT	mg/kg		27.7		 	
Volatile Organic Compounds								
Acetone	67-64-1	E611D/WT	mg/kg		<0.50	<0.50	 	
Benzene	71-43-2	E611D/WT	mg/kg		<0.0050	<0.0050	 	
Bromodichloromethane	75-27-4	E611D/WT	mg/kg		<0.050	<0.050	 	
Bromoform	75-25-2	E611D/WT	mg/kg		<0.050	<0.050	 	
Bromomethane	74-83-9	E611D/WT	mg/kg		<0.050	<0.050	 	
Carbon tetrachloride	56-23-5	E611D/WT	mg/kg		<0.050	<0.050	 	

Page : 16 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

AL

Matrix: Soil		Client	sample ID	23-5-2D	23-5-3	23-5-3D	 	
mauxi our		Sampling	date/time	28-Nov-2023 17:00	28-Nov-2023 17:00	28-Nov-2023 17:00	 	
			Sub-Matrix	Soil	Soil	Soil	 	
Analyte	CAS Number	Method/Lab	Unit	WT2338972-015	WT2338972-016	WT2338972-017	 	
Volatile Organic Compounds								
Chlorobenzene	108-90-7	E611D/WT	mg/kg		<0.050	<0.050	 	
Chloroform	67-66-3	E611D/WT	mg/kg		<0.050	<0.050	 	
Dibromochloromethane	124-48-1	E611D/WT	mg/kg		<0.050	<0.050	 	
Dibromoethane, 1,2-	106-93-4	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichlorobenzene, 1,2-	95-50-1	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichlorobenzene, 1,3-	541-73-1	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichlorobenzene, 1,4-	106-46-7	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichlorodifluoromethane	75-71-8	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloroethane, 1,1-	75-34-3	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloroethane, 1,2-	107-06-2	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloroethylene, 1,1-	75-35-4	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloroethylene, cis-1,2-	156-59-2	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloroethylene, trans-1,2-	156-60-5	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloromethane	75-09-2	E611D/WT	mg/kg		<0.045	<0.045	 	
Dichloropropane, 1,2-	78-87-5	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloropropylene, cis+trans-1,3-	542-75-6	E611D/WT	mg/kg		<0.050	<0.050	 	
Dichloropropylene, cis-1,3-	10061-01-5	E611D/WT	mg/kg		<0.030	<0.030	 	
Dichloropropylene, trans-1,3-	10061-02-6	E611D/WT	mg/kg		<0.030	<0.030	 	
Ethylbenzene		E611D/WT	mg/kg		<0.015	<0.015	 	
Hexane, n-	110-54-3	E611D/WT	mg/kg		<0.050	<0.050	 	
Methyl ethyl ketone [MEK]	78-93-3	E611D/WT	mg/kg		<0.50	<0.50	 	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D/WT	mg/kg		<0.50	<0.50	 	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WT	mg/kg		<0.040	<0.040	 	
Styrene	100-42-5	E611D/WT	mg/kg		<0.050	<0.050	 	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D/WT	mg/kg		<0.050	<0.050	 	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D/WT	mg/kg		<0.050	<0.050	 	
Tetrachloroethylene		E611D/WT	mg/kg		<0.050	<0.050	 	
Toluene	108-88-3	E611D/WT	mg/kg		<0.050	<0.050	 	
Trichloroethane, 1,1,1-		E611D/WT	mg/kg		<0.050	<0.050	 	

Page : 17 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results Evaluation

Matrix: Soil		Client	sample ID	23-5-2D	23-5-3	23-5-3D	 	
Watti. 331		Sampling	date/time	28-Nov-2023 17:00	28-Nov-2023 17:00	28-Nov-2023 17:00	 	
		S	ub-Matrix	Soil	Soil	Soil	 	
Analyte	CAS Number	Method/Lab	Unit	WT2338972-015	WT2338972-016	WT2338972-017	 	
Volatile Organic Compounds								
Trichloroethane, 1,1,2-	79-00-5	E611D/WT	mg/kg		<0.050	<0.050	 	
Trichloroethylene	79-01-6	E611D/WT	mg/kg		<0.010	<0.010	 	
Trichlorofluoromethane	75-69-4	E611D/WT	mg/kg		<0.050	<0.050	 	
Vinyl chloride	75-01-4	E611D/WT	mg/kg		<0.020	<0.020	 	
Xylene, m+p-	179601-23-1	E611D/WT	mg/kg		<0.030	<0.030	 	
Xylene, o-	95-47-6	E611D/WT	mg/kg		<0.030	<0.030	 	
Xylenes, total	1330-20-7	E611D/WT	mg/kg		<0.050	<0.050	 	
BTEX, total		E611D/WT	mg/kg		<0.10	<0.10	 	
Hydrocarbons								
F1 (C6-C10)		E581.F1/WT	mg/kg		<5.0	<5.0	 	
F2 (C10-C16)		E601.SG-L/WT	mg/kg		<10	<10	 	
F3 (C16-C34)		E601.SG-L/WT	mg/kg		<50	<50	 	
F4 (C34-C50)		E601.SG-L/WT	mg/kg		<50	<50	 	
F1-BTEX		EC580/WT	mg/kg		<5.0	<5.0	 	
Hydrocarbons, total (C6-C50)	n/a	EC581/WT	mg/kg		<80	<80	 	
Chromatogram to baseline at nC50	n/a	E601.SG-L/WT	-		YES	YES	 	
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate	e) 392-83-6	E601.SG-L/WT	%		83.1	85.2	 	
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WT	%		93.2	96.5	 	
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%		108	112	 	
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%		105	109	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 18 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

Summary of Guideline Limits

Analyte	CAS Number	Unit	ON153/04 T3-ICC-C	ON153/04 T3-ICC-F			
Physical Tests							
Moisture		%					
pH (1:2 soil:CaCl2-aq)		pH units					
Particle Size							
Grain size curve		-					
Percent Passing							
Passing (0.002mm)		%					
Passing (0.004mm)		%					
Passing (0.005mm)		%					
Passing (0.020mm)		%					
Passing (0.0312mm)		%					
Passing (0.05mm)		%					
Passing (0.063mm)		%					
Passing (0.075mm)		%					
Passing (0.125mm)		%					
Passing (0.149mm)		%					
Passing (0.250mm)		%					
Passing (0.420mm)		%					
Passing (0.50mm)		%					
Passing (0.841mm)		%					
Passing (1.0mm)		%					
Passing (19mm)		%					
Passing (2.0mm)		%					
Passing (25.4mm)		%					
Passing (38.1mm)		%					
Passing (4.75mm)		%					
Passing (50.8mm)		%					
Passing (76.2mm)		%					
Passing (9.5mm)		%					
Metals							
Antimony	7440-36-0	mg/kg	40 mg/kg	50 mg/kg			
Arsenic	7440-38-2	mg/kg	18 mg/kg	18 mg/kg			
Barium	7440-39-3	mg/kg	670 mg/kg	670 mg/kg			
Beryllium	7440-41-7	mg/kg	8 mg/kg	10 mg/kg			
Boron	7440-42-8	mg/kg	120 mg/kg	120 mg/kg			
Cadmium	7440-43-9	mg/kg	1.9 mg/kg	1.9 mg/kg			
Chromium	7440-47-3	mg/kg	160 mg/kg	160 mg/kg			
Cobalt	7440-48-4	mg/kg	80 mg/kg	100 mg/kg			

Page : 19 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

<i>\nalyte</i>	0404/	Unit						
nalyte	CAS Number	Unit	ON153/04	ON153/04				
letele Continued			T3-ICC-C	T3-ICC-F				
Metals - Continued Copper	7440-50-8	mg/kg	230 mg/kg	300 mg/kg		I	1	1
Lead	7439-92-1	mg/kg	120 mg/kg	120 mg/kg				
Molybdenum	7439-98-7	mg/kg	40 mg/kg	40 mg/kg				
Nickel	7440-02-0	mg/kg	270 mg/kg	340 mg/kg				
Selenium	7782-49-2	mg/kg	5.5 mg/kg	5.5 mg/kg				
Silver	7440-22-4	mg/kg	40 mg/kg	50 mg/kg				
Thallium	7440-28-0	mg/kg	3.3 mg/kg	3.3 mg/kg				
Uranium	7440-61-1	mg/kg	33 mg/kg	33 mg/kg				
Vanadium	7440-62-2	mg/kg	86 mg/kg	86 mg/kg				
Zinc	7440-66-6	mg/kg	340 mg/kg	340 mg/kg				
/olatile Organic Compounds	7 7 70 00 0	mg/kg	040 mg/kg	040 mg/kg				1
Acetone	67-64-1	mg/kg	16 mg/kg	28 mg/kg			T	
Benzene	71-43-2	mg/kg	0.32 mg/kg	0.4 mg/kg				
Bromodichloromethane	75-27-4	mg/kg	18 mg/kg	18 mg/kg				
Bromoform	75-25-2	mg/kg	0.61 mg/kg	1.7 mg/kg				
Bromomethane	74-83-9	mg/kg	0.05 mg/kg	0.05 mg/kg				
BTEX. total		mg/kg	0.05 mg/kg	0.00 mg/kg				
Carbon tetrachloride	56-23-5	mg/kg	0.21 mg/kg	1.5 mg/kg				
Chlorobenzene	108-90-7	mg/kg	2.4 mg/kg	2.7 mg/kg				
Chloroform	67-66-3	mg/kg	0.47 mg/kg	0.18 mg/kg				
Dibromochloromethane	124-48-1	mg/kg	13 mg/kg	13 mg/kg				
Dibromoethane, 1,2-	106-93-4	mg/kg	0.05 mg/kg	0.05 mg/kg				
Dichlorobenzene, 1,2-	95-50-1	mg/kg	6.8 mg/kg	8.5 mg/kg				
Dichlorobenzene, 1,3-	541-73-1	mg/kg	9.6 mg/kg	12 mg/kg				
Dichlorobenzene, 1,4-	106-46-7	mg/kg	0.2 mg/kg	0.84 mg/kg				
Dichlorodifluoromethane	75-71-8	mg/kg	16 mg/kg	25 mg/kg				
Dichloroethane, 1,1-	75-34-3	mg/kg	17 mg/kg	21 mg/kg				
Dichloroethane, 1,2-	107-06-2	mg/kg	0.05 mg/kg	0.05 mg/kg				
Dichloroethylene, 1,1-	75-35-4	mg/kg	0.064 mg/kg	0.48 mg/kg				
Dichloroethylene, cis-1,2-	156-59-2	mg/kg	55 mg/kg	37 mg/kg				
Dichloroethylene, trans-1,2-	156-60-5	mg/kg	1.3 mg/kg	9.3 mg/kg				
Dichloromethane	75-09-2	mg/kg	1.6 mg/kg	2 mg/kg				
Dichloropropane, 1,2-	78-87-5	mg/kg	0.16 mg/kg	0.68 mg/kg				
Dichloropropylene, cis+trans-1,3-	542-75-6	mg/kg	0.18 mg/kg	0.21 mg/kg				
Dichloropropylene, cis-1,3-	10061-01-5	mg/kg						
Dichloropropylene, trans-1,3-	10061-02-6	mg/kg						
Ethylbenzene	100-41-4	mg/kg	9.5 mg/kg	19 mg/kg				
Hexane, n-	110-54-3	mg/kg	46 mg/kg	88 mg/kg				
Methyl ethyl ketone [MEK]	78-93-3	mg/kg	70 mg/kg	88 mg/kg				

Page : 20 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

inalyte	CAS Number	Unit	ON153/04	ON153/04		
			T3-ICC-C	T3-ICC-F		
/olatile Organic Compounds - Continued						
Methyl isobutyl ketone [MIBK]	108-10-1	mg/kg	31 mg/kg	210 mg/kg		
Methyl-tert-butyl ether [MTBE]	1634-04-4	mg/kg	11 mg/kg	3.2 mg/kg		
Styrene	100-42-5	mg/kg	34 mg/kg	43 mg/kg		
Tetrachloroethane, 1,1,1,2-	630-20-6	mg/kg	0.087 mg/kg	0.11 mg/kg		
Tetrachloroethane, 1,1,2,2-	79-34-5	mg/kg	0.05 mg/kg	0.094 mg/kg		
Tetrachloroethylene	127-18-4	mg/kg	4.5 mg/kg	21 mg/kg		
Toluene	108-88-3	mg/kg	68 mg/kg	78 mg/kg		
Trichloroethane, 1,1,1-	71-55-6	mg/kg	6.1 mg/kg	12 mg/kg		
Trichloroethane, 1,1,2-	79-00-5	mg/kg	0.05 mg/kg	0.11 mg/kg		
Trichloroethylene	79-01-6	mg/kg	0.91 mg/kg	0.61 mg/kg		
Trichlorofluoromethane	75-69-4	mg/kg	4 mg/kg	5.8 mg/kg		
Vinyl chloride	75-01-4	mg/kg	0.032 mg/kg	0.25 mg/kg		
Xylene, m+p-	179601-23-1	mg/kg				Т
Xylene, o-	95-47-6	mg/kg				
Xylenes, total	1330-20-7	mg/kg	26 mg/kg	30 mg/kg		Т
ydrocarbons						
Chromatogram to baseline at nC50	n/a	-				Т
F1 (C6-C10)		mg/kg	55 mg/kg	65 mg/kg		Т
F1-BTEX		mg/kg	55 mg/kg	65 mg/kg		
F2 (C10-C16)		mg/kg	230 mg/kg	250 mg/kg		Т
F2-Naphthalene		mg/kg				
F3 (C16-C34)		mg/kg	1700 mg/kg	2500 mg/kg		
F3-PAH	n/a	mg/kg				
F4 (C34-C50)		mg/kg	3300 mg/kg	6600 mg/kg		
Hydrocarbons, total (C6-C50)	n/a	mg/kg				
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	%				
Dichlorotoluene, 3,4-	95-75-0	%				
Bromofluorobenzene, 4-	460-00-4	%				
Difluorobenzene, 1,4-	540-36-3	%				
olycyclic Aromatic Hydrocarbons						ľ
Acenaphthene	83-32-9	mg/kg	96 mg/kg	96 mg/kg		Т
Acenaphthylene	208-96-8	mg/kg	0.15 mg/kg	0.17 mg/kg		
Anthracene	120-12-7	mg/kg	0.67 mg/kg	0.74 mg/kg		
Benz(a)anthracene	56-55-3	mg/kg	0.96 mg/kg	0.96 mg/kg		
Benzo(a)pyrene	50-32-8	mg/kg	0.3 mg/kg	0.3 mg/kg		
Benzo(b+j)fluoranthene	n/a	mg/kg	0.96 mg/kg	0.96 mg/kg		
Benzo(g,h,i)perylene	191-24-2	mg/kg	9.6 mg/kg	9.6 mg/kg		
Benzo(k)fluoranthene	207-08-9	mg/kg	0.96 mg/kg	0.96 mg/kg		
Chrysene	218-01-9	mg/kg	9.6 mg/kg	9.6 mg/kg		
-··· / ··-	2.5 01 0	פיי שייי	***************************************	***************************************		

 Page
 :
 21 of 22

 Work Order
 :
 WT2338972

Client : Palmer Environmental Consulting Group Inc.

	CAS Number	Unit	ON153/04	ON153/04			
			T3-ICC-C	T3-ICC-F			
Colycyclic Aromatic Hydrocarbons - Continued	53-70-3	ma/lea	0.4	0.4	1	1	
Dibenz(a,h)anthracene		mg/kg	0.1 mg/kg	0.1 mg/kg			
Fluoranthene	206-44-0	mg/kg	9.6 mg/kg	9.6 mg/kg			
Fluorene	86-73-7	mg/kg	62 mg/kg	69 mg/kg			
Indeno(1,2,3-c,d)pyrene	193-39-5	mg/kg	0.76 mg/kg	0.95 mg/kg			
Methylnaphthalene, 1+2-		mg/kg	76 mg/kg	85 mg/kg			
Methylnaphthalene, 1-	90-12-0	mg/kg	76 mg/kg	85 mg/kg			
Methylnaphthalene, 2-	91-57-6	mg/kg	76 mg/kg	85 mg/kg			
Naphthalene	91-20-3	mg/kg	9.6 mg/kg	28 mg/kg			
Phenanthrene	85-01-8	mg/kg	12 mg/kg	16 mg/kg			
Pyrene	129-00-0	mg/kg	96 mg/kg	96 mg/kg			
Acridine-d9	34749-75-2	%					
Chrysene-d12	1719-03-5	%					
Naphthalene-d8	1146-65-2	%					
Phenanthrene-d10	1517-22-2	%					
rganochlorine Pesticides							
Aldrin	309-00-2	mg/kg	0.088 mg/kg	0.11 mg/kg			
Chlordane, cis- (alpha)	5103-71-9	mg/kg					
Chlordane, total	57-74-9	mg/kg	0.05 mg/kg	0.05 mg/kg			
Chlordane, trans- (gamma)	5103-74-2	mg/kg					
DDD, 2,4'-	53-19-0	mg/kg					
DDD, 4,4'-	72-54-8	mg/kg					
DDD, total		mg/kg	4.6 mg/kg	4.6 mg/kg			
DDE, 2,4'-	3424-82-6	mg/kg					
DDE, 4,4'-	72-55-9	mg/kg					
DDE, total		mg/kg	0.52 mg/kg	0.65 mg/kg			
DDT, 2,4'-	789-02-6	mg/kg					
DDT, 4,4'-	50-29-3	mg/kg					
DDT, total		mg/kg	1.4 mg/kg	1.4 mg/kg			
Dieldrin	60-57-1	mg/kg	0.088 mg/kg	0.11 mg/kg			
Endosulfan, alpha-	959-98-8	mg/kg					
Endosulfan, beta-	33213-65-9	mg/kg					
Endosulfan, total		mg/kg	0.3 mg/kg	0.38 mg/kg			
Endrin	72-20-8	mg/kg	0.04 mg/kg	0.04 mg/kg			
Heptachlor epoxide	1024-57-3	mg/kg	0.05 mg/kg	0.04 mg/kg 0.05 mg/kg			
Heptachlor	76-44-8	mg/kg	0.19 mg/kg	0.03 mg/kg 0.19 mg/kg			
Hexachlorobenzene	118-74-1	mg/kg	0.66 mg/kg	0.13 mg/kg 0.66 mg/kg			
Hexachlorobutadiene	87-68-3	mg/kg	0.031 mg/kg	0.00 mg/kg			
Hexachlorocyclohexane, gamma-	58-89-9	mg/kg	0.051 mg/kg	0.095 mg/kg 0.063 mg/kg			
Hexachloroethane	67-72-1	mg/kg	0.056 mg/kg 0.21 mg/kg	0.063 mg/kg 0.43 mg/kg			

Page : 22 of 22 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	CAS Number	Unit	ON153/04 T3-ICC-C	ON153/04 T3-ICC-F			
Organochlorine Pesticides - Continued							
Methoxychlor	72-43-5	mg/kg	1.6 mg/kg	1.6 mg/kg			
Decachlorobiphenyl	2051-24-3	%					
Tetrachloro-m-xylene	877-09-8	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

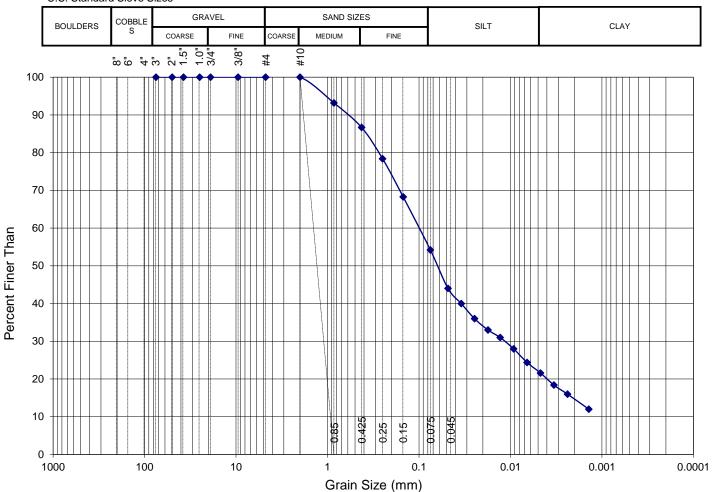
T3-ICC-C 153 T3-Soil-Ind/Com/Commu. Property Use (Coarse)
T3-ICC-F 153 T3-Soil-Ind/Com/Commu. Property Use (Fine)

PARTICLE SIZE DISTRIBUTION CURVE

Client Name: WT2338972003

Project Number: Client Sample ID

23-1-7


Lab Sample ID WT2338972003

Date Sample Received: 00-Jan-00

Test Completion Date: 05-Dec-23

Analyst: SHCH

U.S. Standard Sieve Sizes

METHOD DESCRIPTION		SUMMARY OF RES	ULTS	
Method Reference: ASTM D6913 & D79	28	GRAIN SIZE	WT %	DIA. RANGE (mm)
Dispersion method: Mechanical		% GRAVEL:	< 1	> 4.75
Dispersion period: 1 minute	cm/s	% COARSE SAND :	< 1	2.0 - 4.75
		% MEDIUM SAND :	13.31	0.425 - 2.0
		% FINE SAND :	32.51	0.075 - 0.425
DESCRIPTION OF SAND AND GRAVEL	PARTICLES	% SILT :	32.08	0.075 - 0.005
Shape: Angular		% CLAY :	22.10	< 0.005
Hardness: Hard				

QUALITY CONTROL INTERPRETIVE REPORT

:WT2338972 **Work Order** Page : 1 of 14

Client Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz **Account Manager** : Andrew Martin

Address Address : 74 Berkeley Street : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone : +1 519 886 6910

Project : 1904320 **Date Samples Received** : 29-Nov-2023 13:55

PO Issue Date : 07-Dec-2023 15:58 C-O-C number ٠____ Sampler :SB

: Ajax, ON Quote number :WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received :17 No. of samples analysed :17

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page 3 of 14 Work Order: WT2338972

Palmer Environmental Consulting Group Inc. Client

Project 1904320

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Soil/Solid

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS) Recoveries								
Organochlorine Pesticides	Anonymous	Anonymous	DDT, 2,4'-	789-02-6	E660F	44.9 % ^K	50.0-150%	Recovery less than lower data quality objective
Organochlorine Pesticides	Anonymous	Anonymous	DDT, 4,4'-	50-29-3	E660F	43.9 % K	50.0-150%	Recovery less than lower data quality objective
Organochlorine Pesticides	Anonymous	Anonymous	Endrin	72-20-8	E660F	46.2 % K	50.0-150%	Recovery less than lower data quality objective
Organochlorine Pesticides	Anonymous	Anonymous	Methoxychlor	72-43-5	E660F	36.5 % K	50.0-150%	Recovery less than lower data quality objective

Result Qualifiers

Qualifier	Description
K	Matrix Spike recovery outside ALS DQO due to sample matrix effects.

Regular Sample Surrogates

Sub-Matrix: Soil

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Organochlorine Pesticides Surrogates	WT2338972-006	23-2-2D	Decachlorobiphenyl	2051-24-3	162 %	50.0-150	Recovery greater than upper
						%	data quality objective

Page : 4 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid				E ^r	valuation: 🗴 =	Holding time excee	edance ; ✓ = Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	E	xtraction / Preparation			Analysis	
Container (Client Contain ID(a)				t to take a Time	E I	Amelia Dete	Literation of Times	

Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass soil methanol vial [ON MECP]										
23-1-6	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass soil methanol vial [ON MECP]										
23-2-1	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID								1		
Glass soil methanol vial [ON MECP]										
23-3-7	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass soil methanol vial [ON MECP]										
23-4-4	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass soil methanol vial [ON MECP]								I		
23-5-3	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	1
				days	,				,	
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID				,-						
Glass soil methanol vial [ON MECP]								I		
23-5-3D	E581.F1	28-Nov-2023	01-Dec-2023	14	3 days	√	02-Dec-2023	40 days	1 days	1
20-0-0D	2501.11	20-1404-2020	01-00-2020	days	o days	·	02-000-2020	40 days	1 days	•
				uays						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP] 23-1-6	E601.SG-L	28-Nov-2023	03-Dec-2023	4.4	E days	√	06 Dec 2022	10 days	O dovo	1
Z3-1-0	E001.5G-L	ZO-INUV-ZUZ3	U3-Dec-2023	14	5 days	•	06-Dec-2023	40 days	∠ days	•
				days						

Page : 5 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Soil/Solid						/aluation. ^ –	Holding time exce	euance , v	- vviti iii i	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-2-1	E601.SG-L	28-Nov-2023	03-Dec-2023	14	5 days	✓	06-Dec-2023	40 days	2 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-3-7	E601.SG-L	28-Nov-2023	03-Dec-2023	14	5 days	✓	06-Dec-2023	40 days	2 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]	1									
23-4-4	E601.SG-L	28-Nov-2023	03-Dec-2023	14	5 days	✓	06-Dec-2023	40 days	2 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-5-3	E601.SG-L	28-Nov-2023	03-Dec-2023	14	5 days	✓	06-Dec-2023	40 days	2 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID (Low Level)										
Glass soil jar/Teflon lined cap [ON MECP]							I			
23-5-3D	E601.SG-L	28-Nov-2023	03-Dec-2023	14	5 days	✓	06-Dec-2023	40 days	2 days	✓
				days						
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-1-4	E440C	28-Nov-2023	04-Dec-2023	180	6 days	✓	05-Dec-2023	180	7 days	✓
				days				days	,	
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-2-4	E440C	28-Nov-2023	04-Dec-2023	180	6 days	✓	05-Dec-2023	180	7 days	✓
				days	′			days		
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)				, ,						
Glass soil jar/Teflon lined cap [ON MECP]							I			
23-2-4D	E440C	28-Nov-2023	04-Dec-2023	180	6 days	✓	05-Dec-2023	180	7 days	✓
				days	, .			days	, 0	
Matala : Matala in CaillCalid by CDC ICDMC (4255 ym)										
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm) Glass soil jar/Teflon lined cap [ON MECP]										
23-3-4	E440C	28-Nov-2023	04-Dec-2023	180	6 days	√	05-Dec-2023	180	7 days	✓
20 0 7	2 7 7 0 0	20 1134-2020	0D00-2020		Juays		00-2020	days	ruays	·
				days				uays		

Page : 6 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Soil/Solid						raiuation. × =	Holding time exce			Holding Tilli
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-4-4	E440C	28-Nov-2023	04-Dec-2023	180	6 days	✓	05-Dec-2023	180	7 days	✓
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS (<355 μm)										
Glass soil jar/Teflon lined cap [ON MECP]										
23-5-3	E440C	28-Nov-2023	04-Dec-2023	180	6 days	✓	05-Dec-2023	180	7 days	✓
				days				days		
Organochlorine Pesticides : OCPs by GC-MS-MS or GC-MS										
Glass soil jar/Teflon lined cap [ON MECP]										
23-2-2	E660F	28-Nov-2023	03-Dec-2023	60	5 days	✓	04-Dec-2023	40 days	1 days	✓
				days					_	
Organochlorine Pesticides : OCPs by GC-MS-MS or GC-MS										
Glass soil jar/Teflon lined cap [ON MECP]										
23-2-2D	E660F	28-Nov-2023	03-Dec-2023	60	5 days	✓	04-Dec-2023	40 days	1 days	✓
				days				,	,	
Organochlorine Pesticides : OCPs by GC-MS-MS or GC-MS				, ,			<u> </u>			
Glass soil jar/Teflon lined cap [ON MECP]	I						I			
23-3-4	E660F	28-Nov-2023	03-Dec-2023	60	5 days	✓	04-Dec-2023	40 days	1 days	✓
				days	,, 0			,-	, 0	
Organochlorine Pesticides : OCPs by GC-MS-MS or GC-MS				,-						
Glass soil jar/Teflon lined cap [ON MECP]							I			
23-4-4	E660F	28-Nov-2023	03-Dec-2023	60	5 days	√	04-Dec-2023	40 days	1 days	✓
2011			00 200 2020	days	Jaayo	, i	0 1 200 2020	.o dayo	. 44,5	•
Particle Circ. Corio Circ Parant (Attachment) Hadron Act (Circ. M. d.				adyo						
Particle Size : Grain Size Report (Attachment) Hydrometer/Sieve Method										
Paper Bag (Brown) 23-1-7	E185	28-Nov-2023					07-Dec-2023			
20-1-1	L 100	20-1107-2023					07-060-2023			
Percent Passing : Particle Size Analysis - Hydrometer					1		ı	1		
Paper Bag (Brown)	E102	29 Nov 2022	05 Dog 2022	0.05	7 days	√	05-Dec-2023	005	7 days	1
23-1-7	E183	28-Nov-2023	05-Dec-2023	365	7 days	*	05-Dec-2023	365	7 days	∀
				days				days		
Percent Passing : Particle Size Analysis - Sieve <2mm										
Paper Bag (Brown)	F.100	00.11. 0000	05.0				05.5			,
23-1-7	E182	28-Nov-2023	05-Dec-2023	365	7 days	✓	05-Dec-2023	365	7 days	✓
				days				days		

Page : 7 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Soil/Solid					EV	/aluation. 🔻 –	Holding time excee	suarice,	– vvitriiri	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual	•		Rec	Actual	
Percent Passing : Particle Size Analysis - Sieve >2mm										
Paper Bag (Brown)										
23-1-7	E181	28-Nov-2023	05-Dec-2023	365	7 days	✓	05-Dec-2023	365	7 days	✓
				days				days		
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]							1			
23-1-6	E144	28-Nov-2023					03-Dec-2023		5 days	
Physical Tests - Meisture Content by Crayimetry										
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap [ON MECP]							I			
23-2-1	E144	28-Nov-2023					03-Dec-2023		5 days	
2021		20.101.2020					00 200 2020		o dayo	
Physical Tests: Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP] 23-2-2	E144	28-Nov-2023					03-Dec-2023		5 days	
25-2-2	L 144	20-1107-2023					03-Dec-2023		5 uays	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]	E444	00 N 0000					00 D 0000		5 1	
23-2-2D	E144	28-Nov-2023					03-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
23-3-4	E144	28-Nov-2023					03-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
23-3-7	E144	28-Nov-2023					03-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
23-4-4	E144	28-Nov-2023					03-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
23-4-4D	E144	28-Nov-2023					03-Dec-2023		5 days	
									,-	
	1						L			

Page : 8 of 14 Work Order : WT2338972

Glass soil jar/Teflon lined cap [ON MECP]

Glass soil jar/Teflon lined cap [ON MECP]

Glass soil jar/Teflon lined cap [ON MECP]

Polycyclic Aromatic Hydrocarbons: PAHs by Hex:Ace GC-MS

Polycyclic Aromatic Hydrocarbons: PAHs by Hex:Ace GC-MS

23-3-7

23-4-4

23-4-4D

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Soil/Solid

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Extraction / Preparation Analyte Group : Analytical Method Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date **Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap [ON MECP] E144 28-Nov-2023 23-5-3 03-Dec-2023 5 days **Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap [ON MECP] 23-5-3D E144 28-Nov-2023 03-Dec-2023 5 days Physical Tests: pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap [ON MECP] 23-3-8 E108A 28-Nov-2023 01-Dec-2023 2 days 1 04-Dec-2023 30 days 6 days 30 davs Physical Tests: pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap [ON MECP] E108A ✓ 23-5-2 28-Nov-2023 04-Dec-2023 30 6 days 05-Dec-2023 30 days 7 days 1 days Physical Tests: pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap [ON MECP] 23-5-2D E108A 28-Nov-2023 04-Dec-2023 1 05-Dec-2023 ✓ 6 days 30 days 7 days 30 days Polycyclic Aromatic Hydrocarbons: PAHs by Hex:Ace GC-MS Glass soil jar/Teflon lined cap [ON MECP] E641A 28-Nov-2023 1 23-2-1 03-Dec-2023 60 5 days 04-Dec-2023 40 days 1 days 1 days Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS

28-Nov-2023

28-Nov-2023

28-Nov-2023

03-Dec-2023

03-Dec-2023

03-Dec-2023

5 days

5 days

5 days

1

60 days

60

days

60 days 04-Dec-2023

04-Dec-2023

04-Dec-2023

40 days

40 days

40 days 1 days

1 days

1 days

1

1

E641A

E641A

E641A

Page : 9 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Soil/Solid Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

					varaation.	Tiolaing and exocedance; within Flore				
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Preparation			Analys	sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-1-6	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-2-1	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-3-7	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-4-4	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-5-3	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass soil methanol vial [ON MECP]										
23-5-3D	E611D	28-Nov-2023	01-Dec-2023	14	3 days	✓	02-Dec-2023	40 days	1 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluati	on: × = QC freque		=cincauori, ▼ = 0		<u> </u>
Quality Control Sample Type	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%)) Evaluation
Analytical Methods	ivietrioa	QC LOT#	QC .	Negulai	Actual	Expected	LvaluatiOff
Laboratory Duplicates (DUP)		100000					
CCME PHC - F1 by Headspace GC-FID	E581.F1	1260696	1	20	5.0	5.0	✓
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1260861	1	19	5.2	5.0	✓
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1260170	1	20	5.0	5.0	✓
Moisture Content by Gravimetry	E144	1262447	1	20	5.0	5.0	✓
OCPs by GC-MS-MS or GC-MS	E660F	1260731	1	10	10.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	1260862	1	17	5.8	5.0	✓
Particle Size Analysis - Hydrometer	E183	1264004	1	8	12.5	5.0	✓
Particle Size Analysis - Sieve <2mm	E182	1264003	1	8	12.5	5.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1259956	2	40	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1260695	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
CCME PHC - F1 by Headspace GC-FID	E581.F1	1260696	1	20	5.0	5.0	✓
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1260861	1	19	5.2	5.0	✓
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1260170	2	20	10.0	10.0	✓
Moisture Content by Gravimetry	E144	1262447	1	20	5.0	5.0	✓
OCPs by GC-MS-MS or GC-MS	E660F	1260731	1	10	10.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	1260862	1	17	5.8	5.0	✓
Particle Size Analysis - Hydrometer	E183	1264004	1	8	12.5	5.0	✓
Particle Size Analysis - Sieve <2mm	E182	1264003	1	8	12.5	5.0	✓
Particle Size Analysis - Sieve >2mm	E181	1264002	1	8	12.5	5.0	1
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1259956	2	40	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1260695	1	20	5.0	5.0	√
Method Blanks (MB)							
CCME PHC - F1 by Headspace GC-FID	E581.F1	1260696	1	20	5.0	5.0	1
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1260861	1	19	5.2	5.0	√
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C	1260170	1	20	5.0	5.0	1
Moisture Content by Gravimetry	E144	1262447	1	20	5.0	5.0	√
OCPs by GC-MS-MS or GC-MS	E660F	1260731	1	10	10.0	5.0	<u> </u>
PAHs by Hex:Ace GC-MS	E641A	1260862	1	17	5.8	5.0	√
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1260695	1	20	5.0	5.0	<u> </u>
Matrix Spikes (MS)							_
CCME PHC - F1 by Headspace GC-FID	E581.F1	1260696	1	20	5.0	5.0	1
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L	1260861	1	19	5.2	5.0	√
OCPs by GC-MS-MS or GC-MS	E660F	1260731	1	10	10.0	5.0	√
PAHs by Hex:Ace GC-MS	E641A	1260862	1	17	5.8	5.0	√
THE BY HOALAGE GO-WIG	E041A	1200002	'	17	0.0	0.0	✓

Page : 11 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Matrix: Soil/Solid		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency with	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1260695	1	20	5.0	5.0	✓

Page : 12 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A ALS Environmental - Waterloo	Soil/Solid	MECP E3530	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}\text{C}$) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode. This method is equivalent to ASTM D4972 and is acceptable for topsoil analysis.
Moisture Content by Gravimetry	E144 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Particle Size Analysis - Sieve >2mm	E181 ALS Environmental - Saskatoon	Soil/Solid	ASTM D6913-17 (mod)	Soil samples are disaggregated and sieved through a 2mm sieve. Material retained on the sieve is then further sieved through a series of sieves. The amount passing through the sieves is measured gravimetrically.
Particle Size Analysis - Sieve <2mm	E182 ALS Environmental - Saskatoon	Soil/Solid	ASTM D6913-17 (mod)	Soil samples are disaggregated and sieved through a 2mm sieve. Material passed through the sieve is then further disaggregated using calgon solution and passed through a series of sieves. The amount passing through the sieves is measured gravimetrically.
Particle Size Analysis - Hydrometer	E183 ALS Environmental - Saskatoon	Soil/Solid	ASTM D7928-21 (mod)	Soil material is separated from coarse material (>2mm). A specimen is then disaggregated through mixing with Calgon solution. The material is then suspended in solution wherein regular hydrometer readings are taken at specific time intervals. The principles of Stokes' Law are applied to determine the amount of material remaining in solution as well as the maximum particle size remaining in solution at the specified time.
Grain Size Report (Attachment) Hydrometer/Sieve Method	E185 ALS Environmental - Saskatoon	Soil/Solid	ASTM D6913/D7928	A grain size curve is a graphical representation of the particle sizing of a sample representing the percent passing against the effective particle size.
Metals in Soil/Solid by CRC ICPMS (<355 μm)	E440C ALS Environmental - Waterloo	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 355 µm sieve, and digested with HNO3 and HCI. Dependent on sample matrix, some metals may be only partially recovered, including AI, Ba, Be, Cr, Sr, Ti, TI, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. This method does not adequately recover elemental sulfur, and is unsuitable for assessment of elemental sulfur standards or guidelines. Analysis is by Collision/Reaction Cell ICPMS.

Page : 13 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
CCME PHC - F1 by Headspace GC-FID	E581.F1 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Test results are expressed on a dry weight basis. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID (Low Level)	E601.SG-L ALS Environmental -	Soil/Solid	CCME PHC in Soil - Tier 1	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
	Waterloo			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Test results are expressed on a dry weight basis. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D ALS Environmental - Waterloo	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hex:Ace GC-MS	E641A ALS Environmental - Waterloo	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME PAH Soil Quality Guidelines fact sheet (2010) or ABT1.
OCPs by GC-MS-MS or GC-MS	E660F ALS Environmental - Waterloo	Soil/Solid	EPA 8270E (mod)	OCPs are analyzed by GC-MS-MS or GC-MS
F1-BTEX	EC580 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
Sum F1 to F4 (C6-C50)	EC581 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fractions F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50). F4G-sg is not used within this calculation due to overlap with other fractions.
F2 to F3 minus PAH	EC600 ALS Environmental - Waterloo	Soil/Solid	CCME PHC in Soil - Tier 1	F2-PAH = CCME Fraction 2 (C10-C16) minus Naphthalene F3-PAH = CCME Fraction 3 (C16-C34) minus select Polycyclic Aromatic Hydrocarbons (PAH) as per CCME Soil Tier 1
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions

Page : 14 of 14 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil : 0.01CaCl2 - As Received for	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M
pH				calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	ALS Environmental -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Waterloo			pH meter and electrode.
Digestion for Metals and Mercury (355 µm	EP440C	Soil/Solid	EPA 200.2 (mod)	Samples are sieved through a 355 µm sieve, and digested with HNO3 and HCl. This
Sieve)				method is intended to liberate metals that may be environmentally available.
	ALS Environmental -			
	Waterloo			
VOCs Methanol Extraction for Headspace	EP581	Soil/Solid	EPA 5035A (mod)	VOCs in samples are extracted with methanol. Extracts are then prepared in headspace
Analysis				vials and are heated and agitated on the headspace autosampler, causing VOCs to
	ALS Environmental -			partition between the aqueous phase and the headspace in accordance with Henry's
	Waterloo			law.
PHCs and PAHs Hexane-Acetone Tumbler	EP601	Soil/Solid	CCME PHC in Soil - Tier	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Extraction			1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
	ALS Environmental -			
	Waterloo			
Pesticides, PCB, PAH, and Neutral Extractable	EP660	Soil/Solid	EPA 3570 (mod)	A homogenized subsample is extracted with organic solvents using a mechanical
Chlorinated Hydrocarbons Extraction				shaker.
	ALS Environmental -			
	Waterloo			
Dry and Grind in Soil/Solid <60°C	EPP442	Soil/Solid	Soil Sampling and	After removal of any coarse fragments and reservation of wet subsamples a portion of
			Methods of Analysis,	homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is
	ALS Environmental -		Carter 2008	then particle size reduced with an automated crusher or mortar and pestle, typically to
	Waterloo			<2 mm. Further size reduction may be needed for particular tests.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page : 1 of 19 :WT2338972

Client : Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

: Sylvia Babiarz **Account Manager** : Andrew Martin Contact

> Address :74 Berkeley Street :60 Northland Road, Unit 1 Toronto ON Canada M5V 1E3

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone :+1 519 886 6910

> Date Samples Received : 29-Nov-2023 13:55

Date Analysis Commenced : 30-Nov-2023

Issue Date :07-Dec-2023 15:52

Project : 1904320

Address

PO C-O-C number

Sampler :SB

Site : Ajax, ON Quote number : WT23-PALM100-8 - Ajax GW & Soil

No. of samples received : 17 No. of samples analysed : 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario	
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario	
Greg Pokocky	Manager - Inorganics	Waterloo Metals, Waterloo, Ontario	
Hedy Lai	Team Leader - Inorganics	Saskatoon Sask Soils, Saskatoon, Saskatchewan	
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario	
Josphin Masihi	Analyst	Waterloo Centralized Prep, Waterloo, Ontario	
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario	

Page : 2 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid							Labora	atory Duplicate (E	OUP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1262447)										
WT2338793-001	Anonymous	Moisture		E144	0.25	%	12.2	12.8	4.47%	20%	
Physical Tests (QC	Lot: 1262661)										
TY2312499-001	Anonymous	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	6.47	6.47	0.00%	5%	
Percent Passing (C	C Lot: 1264003)										
WT2338972-003	23-1-7	Passing (0.05mm)		E182	1.0	%	44.7	45.7	2.22%	15%	
		Passing (0.063mm)		E182	1.0	%	49.6	50.3	1.31%	15%	
		Passing (0.075mm)		E182	1.0	%	54.2	54.5	0.608%	15%	
		Passing (0.125mm)		E182	1.0	%	63.7	63.9	0.308%	15%	
		Passing (0.149mm)		E182	1.0	%	68.3	68.4	0.193%	15%	
		Passing (0.250mm)		E182	1.0	%	78.4	78.7	0.360%	15%	
		Passing (0.420mm)		E182	1.0	%	86.4	86.9	0.540%	15%	
		Passing (0.50mm)		E182	1.0	%	87.8	88.4	0.592%	15%	
		Passing (0.841mm)		E182	1.0	%	93.0	93.8	0.792%	15%	
		Passing (1.0mm)		E182	1.0	%	94.1	94.7	0.687%	15%	
Percent Passing (C	C Lot: 1264004)										
WT2338972-003	23-1-7	Passing (0.002mm)		E183	1.0	%	14.4	14.4	0.0157%	15%	
		Passing (0.004mm)		E183	1.0	%	19.9	20.1	0.977%	15%	
		Passing (0.005mm)		E183	1.0	%	22.0	22.3	1.23%	15%	
		Passing (0.020mm)		E183	1.0	%	34.0	35.0	2.96%	15%	
		Passing (0.0312mm)		E183	1.0	%	38.6	39.7	2.64%	15%	
Metals (QC Lot: 12	60170)										
WT2338943-001	Anonymous	Antimony	7440-36-0	E440C	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		Arsenic	7440-38-2	E440C	0.10	mg/kg	2.48	2.58	3.90%	30%	
		Barium	7440-39-3	E440C	0.50	mg/kg	36.8	39.0	5.80%	40%	
		Beryllium	7440-41-7	E440C	0.10	mg/kg	0.41	0.39	0.02	Diff <2x LOR	
		Boron	7440-42-8	E440C	5.0	mg/kg	5.9	5.8	0.09	Diff <2x LOR	
		Cadmium	7440-43-9	E440C	0.020	mg/kg	0.050	0.058	0.008	Diff <2x LOR	
		Chromium	7440-47-3	E440C	0.50	mg/kg	14.3	14.7	2.84%	30%	
		Cobalt	7440-48-4	E440C	0.10	mg/kg	6.30	6.44	2.30%	30%	
		Copper	7440-50-8	E440C	0.50	mg/kg	11.7	12.2	4.54%	30%	

Page : 4 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 120	60170) - continued										
VT2338943-001	Anonymous	Lead	7439-92-1	E440C	0.50	mg/kg	5.90	5.72	3.15%	40%	
		Molybdenum	7439-98-7	E440C	0.10	mg/kg	0.21	0.20	0.008	Diff <2x LOR	
		Nickel	7440-02-0	E440C	0.50	mg/kg	13.6	14.1	3.93%	30%	
		Selenium	7782-49-2	E440C	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		Silver	7440-22-4	E440C	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		Thallium	7440-28-0	E440C	0.050	mg/kg	0.096	0.095	0.001	Diff <2x LOR	
		Uranium	7440-61-1	E440C	0.050	mg/kg	0.406	0.390	4.04%	30%	
		Vanadium	7440-62-2	E440C	0.20	mg/kg	24.1	24.6	2.13%	30%	
		Zinc	7440-66-6	E440C	2.0	mg/kg	27.8	28.7	3.26%	30%	
olatile Organic Co	mpounds (QC Lot: 126	0695)									
VT2338943-002	Anonymous	Acetone	67-64-1	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		Bromodichloromethane	75-27-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chlorobenzene	108-90-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dibromoethane, 1,2-	106-93-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	0.045	mg/kg	<0.045	<0.045	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	
		Laryinorizerie	100-41-4	120115	0.010	mg/ng	30.010	10.010		5/11 12X LOIK	

Page : 5 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	mpounds (QC Lot: 1	260695) - continued									
WT2338943-002	Anonymous	Hexane, n-	110-54-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.040	mg/kg	<0.040	<0.040	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.030	mg/kg	<0.030	<0.030	0	Diff <2x LOR	
Hardina and ana 700	L -4: 4000000)										
Hydrocarbons (QC WT2338943-002	Anonymous	F1 (C6-C10)		E581.F1	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
	•	11 (00-010)		2001	0.0	9/9	0.0	0.0	•	D 2X 2011	
Hydrocarbons (QC WT2339181-001	Anonymous	F2 (C40 C46)		E601.SG-L	10	mg/kg	5760	5250	9.26%	40%	
W12339161-001	Anonymous	F2 (C10-C16)		E601.SG-L	50		3320	3240	2.42%	40%	
		F3 (C16-C34)				mg/kg					
		F4 (C34-C50)		E601.SG-L	50	mg/kg	<50	52	2	Diff <2x LOR	
	Hydrocarbons (QC						1				
WT2339181-001	Anonymous	Acenaphthene	83-32-9	E641A	0.828	mg/kg	<0.828	<0.828	0	Diff <2x LOR	
		Acenaphthylene	208-96-8	E641A	0.050	mg/kg	0.270	0.264	2.21%	50%	
		Anthracene	120-12-7	E641A	0.391	mg/kg	<0.391	<0.391	0	Diff <2x LOR	
		Benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	0.216	0.312	36.2%	50%	
		Benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	0.212	0.291	31.7%	50%	
		Benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.337	0.439	26.2%	50%	
		Benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	0.160	0.212	0.052	Diff <2x LOR	J
		Benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	0.128	0.175	0.046	Diff <2x LOR	J
		Chrysene	218-01-9	E641A	0.050	mg/kg	0.250	0.334	28.9%	50%	
		Dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	0.054	0.004	Diff <2x LOR	J
		Fluoranthene	206-44-0	E641A	0.050	mg/kg	0.390	0.615	44.8%	50%	

Page : 6 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Sub-Matrix: Soil/Solid							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	C Hydrocarbons (QC I	_ot: 1260862) - continued									
WT2339181-001	Anonymous	Fluorene	86-73-7	E641A	0.050	mg/kg	1.08	1.06	1.28%	50%	
		Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	0.169	0.219	0.050	Diff <2x LOR	J
		Methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	6.37	7.00	9.39%	50%	
		Methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	10.6	11.8	11.4%	50%	
		Naphthalene	91-20-3	E641A	3.48	mg/kg	<3.48	<3.48	0	Diff <2x LOR	
		Phenanthrene	85-01-8	E641A	0.050	mg/kg	1.85	1.91	3.27%	50%	
		Pyrene	129-00-0	E641A	0.050	mg/kg	0.825	0.991	18.3%	50%	
Organochlorine Pes	sticides (QC Lot: 1260	0731)									
WT2338792-001	Anonymous	Aldrin	309-00-2	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Chlordane, cis- (alpha)	5103-71-9	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Chlordane, trans- (gamma)	5103-74-2	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDD, 2,4'-	53-19-0	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDD, 4,4'-	72-54-8	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDE, 2,4'-	3424-82-6	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDE, 4,4'-	72-55-9	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDT, 2,4'-	789-02-6	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		DDT, 4,4'-	50-29-3	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Dieldrin	60-57-1	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Endosulfan, alpha-	959-98-8	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Endosulfan, beta-	33213-65-9	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Endrin	72-20-8	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Heptachlor	76-44-8	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Heptachlor epoxide	1024-57-3	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		Hexachlorobenzene	118-74-1	E660F	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Hexachlorobutadiene	87-68-3	E660F	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Hexachloroethane	67-72-1	E660F	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		Methoxychlor	72-43-5	E660F	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	

Qualifiers

Qualifier Description

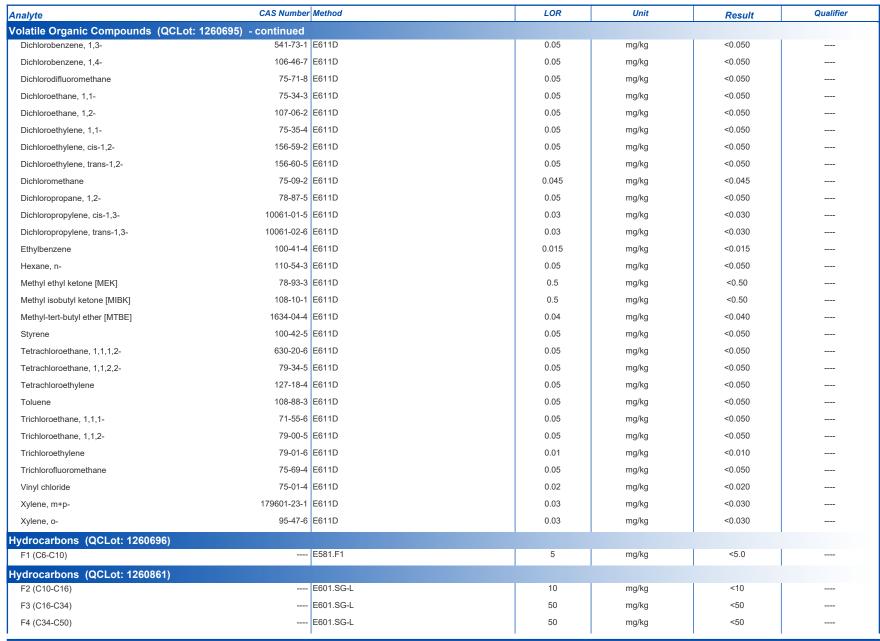
Duplicate results and limits are expressed in terms of absolute difference.

Page : 7 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Method Blank (MB) Report

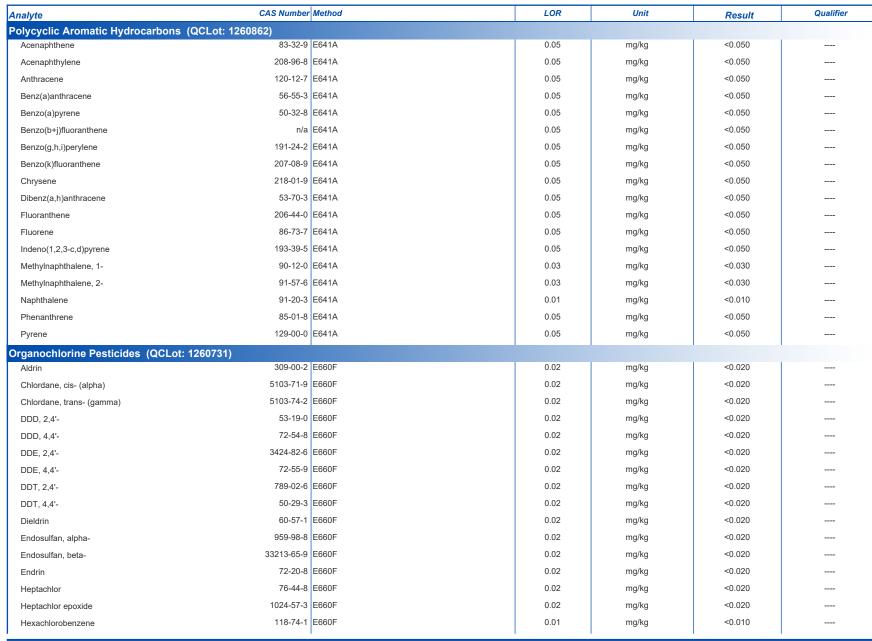

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1262447)						
Moisture		E144	0.25	%	<0.25	
Metals (QCLot: 1260170)						
Antimony	7440-36-0	E440C	0.1	mg/kg	<0.10	
Arsenic	7440-38-2	E440C	0.1	mg/kg	<0.10	
Barium	7440-39-3	E440C	0.5	mg/kg	<0.50	
Beryllium	7440-41-7	E440C	0.1	mg/kg	<0.10	
Boron	7440-42-8	E440C	5	mg/kg	<5.0	
Cadmium	7440-43-9	E440C	0.02	mg/kg	<0.020	
Chromium	7440-47-3	E440C	0.5	mg/kg	<0.50	
Cobalt	7440-48-4	E440C	0.1	mg/kg	<0.10	
Copper	7440-50-8	E440C	0.5	mg/kg	<0.50	
Lead	7439-92-1	E440C	0.5	mg/kg	<0.50	
Molybdenum	7439-98-7	E440C	0.1	mg/kg	<0.10	
Nickel	7440-02-0	E440C	0.5	mg/kg	<0.50	
Selenium	7782-49-2	E440C	0.2	mg/kg	<0.20	
Silver	7440-22-4	E440C	0.1	mg/kg	<0.10	
Thallium	7440-28-0	E440C	0.05	mg/kg	<0.050	
Uranium	7440-61-1	E440C	0.05	mg/kg	<0.050	
Vanadium	7440-62-2	E440C	0.2	mg/kg	<0.20	
Zinc	7440-66-6	E440C	2	mg/kg	<2.0	
olatile Organic Compounds (QC	Lot: 1260695)					
Acetone	67-64-1	E611D	0.5	mg/kg	<0.50	
Benzene	71-43-2	E611D	0.005	mg/kg	<0.0050	
Bromodichloromethane	75-27-4	E611D	0.05	mg/kg	<0.050	
Bromoform	75-25-2	E611D	0.05	mg/kg	<0.050	
Bromomethane	74-83-9	E611D	0.05	mg/kg	<0.050	
Carbon tetrachloride	56-23-5	E611D	0.05	mg/kg	<0.050	
Chlorobenzene	108-90-7	E611D	0.05	mg/kg	<0.050	
Chloroform	67-66-3	E611D	0.05	mg/kg	<0.050	
Dibromochloromethane	124-48-1	E611D	0.05	mg/kg	<0.050	
Dibromoethane, 1,2-	106-93-4	E611D	0.05	mg/kg	<0.050	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.05	mg/kg	<0.050	

Page : 8 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320



Page : 9 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 10 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 11 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS N	mber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1259956)								
pH (1:2 soil:CaCl2-aq)	E108A		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 1262447)								
Moisture	E144	0.25	%	50 %	98.9	90.0	110	
Physical Tests (QCLot: 1262661)								
pH (1:2 soil:CaCl2-aq)	E108A		pH units	7 pH units	100	98.0	102	
Metals (QCLot: 1260170)								
	-36-0 E440C	0.1	mg/kg	100 mg/kg	104	80.0	120	
Arsenic 744	-38-2 E440C	0.1	mg/kg	100 mg/kg	108	80.0	120	
Barium 744	-39-3 E440C	0.5	mg/kg	25 mg/kg	103	80.0	120	
Beryllium 744	-41-7 E440C	0.1	mg/kg	10 mg/kg	96.0	80.0	120	
Boron 744	-42-8 E440C	5	mg/kg	100 mg/kg	97.4	80.0	120	
Cadmium 744	-43-9 E440C	0.02	mg/kg	10 mg/kg	94.5	80.0	120	
Chromium 744	-47-3 E440C	0.5	mg/kg	25 mg/kg	99.7	80.0	120	
Cobalt 744	-48-4 E440C	0.1	mg/kg	25 mg/kg	99.2	80.0	120	
Copper 744	-50-8 E440C	0.5	mg/kg	25 mg/kg	99.1	80.0	120	
Lead 743	-92-1 E440C	0.5	mg/kg	50 mg/kg	98.5	80.0	120	
Molybdenum 743	-98-7 E440C	0.1	mg/kg	25 mg/kg	98.4	80.0	120	
Nickel 744	-02-0 E440C	0.5	mg/kg	50 mg/kg	99.0	80.0	120	
Selenium 778	-49-2 E440C	0.2	mg/kg	100 mg/kg	103	80.0	120	
Silver 744	-22-4 E440C	0.1	mg/kg	10 mg/kg	86.7	80.0	120	
Thallium 744	-28-0 E440C	0.05	mg/kg	100 mg/kg	93.4	80.0	120	
Uranium 744	-61-1 E440C	0.05	mg/kg	0.5 mg/kg	93.6	80.0	120	
Vanadium 744	-62-2 E440C	0.2	mg/kg	50 mg/kg	102	80.0	120	
Zinc 744	-66-6 E440C	2	mg/kg	50 mg/kg	96.7	80.0	120	
Volatile Organic Compounds (QCLot: 1260695)								
Acetone 6	-64-1 E611D	0.5	mg/kg	3.475 mg/kg	93.6	60.0	140	
Benzene 7	-43-2 E611D	0.005	mg/kg	3.475 mg/kg	91.5	70.0	130	
Bromodichloromethane 7	-27-4 E611D	0.05	mg/kg	3.475 mg/kg	101	50.0	140	
Bromoform 7	-25-2 E611D	0.05	mg/kg	3.475 mg/kg	83.6	70.0	130	
Bromomethane 7	-83-9 E611D	0.05	mg/kg	3.475 mg/kg	102	50.0	140	
Carbon tetrachloride 5	-23-5 E611D	0.05	mg/kg	3.475 mg/kg	114	70.0	130	

Page : 12 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Volatile Organic Compounds (QCLot: 1	260695) - continued										
Chlorobenzene	108-90-7	E611D	0.05	mg/kg	3.475 mg/kg	96.8	70.0	130			
Chloroform	67-66-3	E611D	0.05	mg/kg	3.475 mg/kg	106	70.0	130			
Dibromochloromethane	124-48-1	E611D	0.05	mg/kg	3.475 mg/kg	96.7	60.0	130			
Dibromoethane, 1,2-	106-93-4	E611D	0.05	mg/kg	3.475 mg/kg	95.8	70.0	130			
Dichlorobenzene, 1,2-	95-50-1	E611D	0.05	mg/kg	3.475 mg/kg	95.7	70.0	130			
Dichlorobenzene, 1,3-	541-73-1	E611D	0.05	mg/kg	3.475 mg/kg	95.1	70.0	130			
Dichlorobenzene, 1,4-	106-46-7	E611D	0.05	mg/kg	3.475 mg/kg	94.3	70.0	130			
Dichlorodifluoromethane	75-71-8	E611D	0.05	mg/kg	3.475 mg/kg	65.9	50.0	140			
Dichloroethane, 1,1-	75-34-3	E611D	0.05	mg/kg	3.475 mg/kg	95.7	60.0	130			
Dichloroethane, 1,2-	107-06-2	E611D	0.05	mg/kg	3.475 mg/kg	95.5	60.0	130			
Dichloroethylene, 1,1-	75-35-4	E611D	0.05	mg/kg	3.475 mg/kg	95.4	60.0	130			
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.05	mg/kg	3.475 mg/kg	105	70.0	130			
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.05	mg/kg	3.475 mg/kg	92.5	60.0	130			
Dichloromethane	75-09-2	E611D	0.045	mg/kg	3.475 mg/kg	102	70.0	130			
Dichloropropane, 1,2-	78-87-5	E611D	0.05	mg/kg	3.475 mg/kg	88.4	70.0	130			
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.03	mg/kg	3.475 mg/kg	86.9	70.0	130			
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.03	mg/kg	3.475 mg/kg	80.6	70.0	130			
Ethylbenzene	100-41-4	E611D	0.015	mg/kg	3.475 mg/kg	89.9	70.0	130			
Hexane, n-	110-54-3	E611D	0.05	mg/kg	3.475 mg/kg	90.3	70.0	130			
Methyl ethyl ketone [MEK]	78-93-3	E611D	0.5	mg/kg	3.475 mg/kg	83.7	60.0	140			
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	0.5	mg/kg	3.475 mg/kg	77.4	60.0	140			
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.04	mg/kg	3.475 mg/kg	102	70.0	130			
Styrene	100-42-5	E611D	0.05	mg/kg	3.475 mg/kg	90.1	70.0	130			
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.05	mg/kg	3.475 mg/kg	105	60.0	130			
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.05	mg/kg	3.475 mg/kg	83.4	60.0	130			
Tetrachloroethylene	127-18-4	E611D	0.05	mg/kg	3.475 mg/kg	108	60.0	130			
Toluene	108-88-3	E611D	0.05	mg/kg	3.475 mg/kg	88.8	70.0	130			
Trichloroethane, 1,1,1-	71-55-6	E611D	0.05	mg/kg	3.475 mg/kg	112	60.0	130			
Trichloroethane, 1,1,2-	79-00-5	E611D	0.05	mg/kg	3.475 mg/kg	95.2	60.0	130			
Trichloroethylene	79-01-6	E611D	0.01	mg/kg	3.475 mg/kg	113	60.0	130			
Trichlorofluoromethane	75-69-4	E611D	0.05	mg/kg	3.475 mg/kg	110	50.0	140			
/inyl chloride	75-01-4	E611D	0.02	mg/kg	3.475 mg/kg	83.7	60.0	140			
Kylene, m+p-	179601-23-1	E611D	0.03	mg/kg	6.95 mg/kg	90.4	70.0	130			
	05 47 6	E611D	0.03	mg/kg	3.475 mg/kg	90.4	70.0	130			

Page : 13 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Hydrocarbons (QCLot: 1260696) - con											
F1 (C6-C10)		E581.F1	5	mg/kg	69.1875 mg/kg	103	80.0	120			
Hydrocarbons (QCLot: 1260861)											
F2 (C10-C16)		E601.SG-L	10	mg/kg	656.4125 mg/kg	95.7	70.0	130			
F3 (C16-C34)		E601.SG-L	50	mg/kg	1332.613 mg/kg	91.0	70.0	130			
F4 (C34-C50)		E601.SG-L	50	mg/kg	761.4625 mg/kg	73.3	70.0	130			
Polycyclic Aromatic Hydrocarbons (Q	CLot: 1260862)										
Acenaphthene	83-32-9	E641A	0.05	mg/kg	0.5 mg/kg	83.7	60.0	130			
Acenaphthylene	208-96-8	E641A	0.05	mg/kg	0.5 mg/kg	85.3	60.0	130			
Anthracene	120-12-7	E641A	0.05	mg/kg	0.5 mg/kg	84.8	60.0	130			
Benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	0.5 mg/kg	90.2	60.0	130			
Benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	0.5 mg/kg	84.2	60.0	130			
Benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	0.5 mg/kg	89.5	60.0	130			
Benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	0.5 mg/kg	88.5	60.0	130			
Benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	0.5 mg/kg	92.1	60.0	130			
Chrysene	218-01-9	E641A	0.05	mg/kg	0.5 mg/kg	80.8	60.0	130			
Dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	0.5 mg/kg	74.3	60.0	130			
Fluoranthene	206-44-0	E641A	0.05	mg/kg	0.5 mg/kg	87.6	60.0	130			
Fluorene	86-73-7	E641A	0.05	mg/kg	0.5 mg/kg	87.6	60.0	130			
ndeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	0.5 mg/kg	87.5	60.0	130			
Methylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	0.5 mg/kg	82.0	60.0	130			
Methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	0.5 mg/kg	90.2	60.0	130			
Naphthalene	91-20-3	E641A	0.01	mg/kg	0.5 mg/kg	86.7	60.0	130			
Phenanthrene	85-01-8	E641A	0.05	mg/kg	0.5 mg/kg	85.7	60.0	130			
Pyrene	129-00-0	E641A	0.05	mg/kg	0.5 mg/kg	85.2	60.0	130			
Organochlorine Pesticides (QCLot: 12	60731)										
Aldrin	309-00-2	E660F	0.02	mg/kg	0.01 mg/kg	67.0	50.0	150			
Chlordane, cis- (alpha)	5103-71-9	E660F	0.02	mg/kg	0.01 mg/kg	89.7	50.0	150			
Chlordane, trans- (gamma)	5103-74-2	E660F	0.02	mg/kg	0.01 mg/kg	97.8	50.0	150			
DDD, 2,4'-	53-19-0	E660F	0.02	mg/kg	0.01 mg/kg	98.4	50.0	150			
DDD, 4,4'-	72-54-8	E660F	0.02	mg/kg	0.01 mg/kg	87.8	50.0	150			
DDE, 2,4'-	3424-82-6	E660F	0.02	mg/kg	0.01 mg/kg	75.8	50.0	150			
DDE, 4,4'-	72-55-9	E660F	0.02	mg/kg	0.01 mg/kg	89.5	50.0	150			
DDT, 2,4'-	789-02-6	E660F	0.02	mg/kg	0.01 mg/kg	84.2	50.0	150			
DDT, 4,4'-	50-29-3	E660F	0.02	mg/kg	0.01 mg/kg	77.5	50.0	150			

Page : 14 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Organochlorine Pesticides (QCLot: 1260731) - continued												
Dieldrin	60-57-1	E660F	0.02	mg/kg	0.01 mg/kg	95.9	50.0	150				
Endosulfan, alpha-	959-98-8	E660F	0.02	mg/kg	0.01 mg/kg	82.8	50.0	150				
Endosulfan, beta-	33213-65-9	E660F	0.02	mg/kg	0.01 mg/kg	71.0	50.0	150				
Endrin	72-20-8	E660F	0.02	mg/kg	0.01 mg/kg	80.9	50.0	150				
Heptachlor	76-44-8	E660F	0.02	mg/kg	0.01 mg/kg	79.0	50.0	150				
Heptachlor epoxide	1024-57-3	E660F	0.02	mg/kg	0.01 mg/kg	105	50.0	150				
Hexachlorobenzene	118-74-1	E660F	0.01	mg/kg	0.01 mg/kg	88.9	50.0	150				
Hexachlorobutadiene	87-68-3	E660F	0.01	mg/kg	0.01 mg/kg	97.3	50.0	150				
Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.01	mg/kg	0.01 mg/kg	89.5	50.0	150				
Hexachloroethane	67-72-1	E660F	0.01	mg/kg	0.01 mg/kg	69.0	50.0	150				
Methoxychlor	72-43-5	E660F	0.02	mg/kg	0.01 mg/kg	79.0	50.0	150				

Page : 15 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Soil/So	lid						-	e (MS) Report		
						ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
olatile Organic	Compounds (QCLo	t: 1260695)								
VT2338943-002	Anonymous	Acetone	67-64-1	E611D	2.13 mg/kg	3.125 mg/kg	107	50.0	140	
		Benzene	71-43-2	E611D	1.98 mg/kg	3.125 mg/kg	99.8	50.0	140	
		Bromodichloromethane	75-27-4	E611D	2.20 mg/kg	3.125 mg/kg	110	50.0	140	
		Bromoform	75-25-2	E611D	1.77 mg/kg	3.125 mg/kg	89.0	50.0	140	
		Bromomethane	74-83-9	E611D	2.24 mg/kg	3.125 mg/kg	113	50.0	140	
		Carbon tetrachloride	56-23-5	E611D	2.48 mg/kg	3.125 mg/kg	125	50.0	140	
		Chlorobenzene	108-90-7	E611D	2.06 mg/kg	3.125 mg/kg	103	50.0	140	
		Chloroform	67-66-3	E611D	2.30 mg/kg	3.125 mg/kg	116	50.0	140	
		Dibromochloromethane	124-48-1	E611D	2.05 mg/kg	3.125 mg/kg	103	50.0	140	
		Dibromoethane, 1,2-	106-93-4	E611D	2.03 mg/kg	3.125 mg/kg	102	50.0	140	
		Dichlorobenzene, 1,2-	95-50-1	E611D	2.02 mg/kg	3.125 mg/kg	101	50.0	140	
		Dichlorobenzene, 1,3-	541-73-1	E611D	2.00 mg/kg	3.125 mg/kg	100	50.0	140	
		Dichlorobenzene, 1,4-	106-46-7	E611D	1.98 mg/kg	3.125 mg/kg	99.4	50.0	140	
		Dichlorodifluoromethane	75-71-8	E611D	1.83 mg/kg	3.125 mg/kg	92.1	50.0	140	
		Dichloroethane, 1,1-	75-34-3	E611D	2.07 mg/kg	3.125 mg/kg	104	50.0	140	
		Dichloroethane, 1,2-	107-06-2	E611D	2.09 mg/kg	3.125 mg/kg	105	50.0	140	
		Dichloroethylene, 1,1-	75-35-4	E611D	2.10 mg/kg	3.125 mg/kg	105	50.0	140	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	2.28 mg/kg	3.125 mg/kg	115	50.0	140	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	2.00 mg/kg	3.125 mg/kg	100	50.0	140	
		Dichloromethane	75-09-2	E611D	2.21 mg/kg	3.125 mg/kg	111	50.0	140	
		Dichloropropane, 1,2-	78-87-5	E611D	1.93 mg/kg	3.125 mg/kg	97.1	50.0	140	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	1.88 mg/kg	3.125 mg/kg	94.3	50.0	140	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	1.70 mg/kg	3.125 mg/kg	85.7	50.0	140	
		Ethylbenzene	100-41-4	E611D	1.91 mg/kg	3.125 mg/kg	96.0	50.0	140	
		Hexane, n-	110-54-3	E611D	1.94 mg/kg	3.125 mg/kg	97.7	50.0	140	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	1.90 mg/kg	3.125 mg/kg	95.4	50.0	140	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	1.72 mg/kg	3.125 mg/kg	86.6	50.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	2.06 mg/kg	3.125 mg/kg	103	50.0	140	
		Styrene	100-42-5	E611D	1.90 mg/kg	3.125 mg/kg	95.5	50.0	140	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	2.24 mg/kg	3.125 mg/kg	112	50.0	140	
	I	Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	1.78 mg/kg	3.125 mg/kg	89.7	50.0	140	I

Page : 16 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Soil/Solid						Matrix Spike (MS) Report						
					Sp	oike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Volatile Organic	Compounds (QCLo	t: 1260695) - continued										
WT2338943-002	Anonymous	Tetrachloroethylene	127-18-4	E611D	2.25 mg/kg	3.125 mg/kg	113	50.0	140			
		Toluene	108-88-3	E611D	1.89 mg/kg	3.125 mg/kg	95.0	50.0	140			
		Trichloroethane, 1,1,1-	71-55-6	E611D	2.44 mg/kg	3.125 mg/kg	123	50.0	140			
		Trichloroethane, 1,1,2-	79-00-5	E611D	2.03 mg/kg	3.125 mg/kg	102	50.0	140			
		Trichloroethylene	79-01-6	E611D	2.43 mg/kg	3.125 mg/kg	122	50.0	140			
		Trichlorofluoromethane	75-69-4	E611D	2.47 mg/kg	3.125 mg/kg	124	50.0	140			
		Vinyl chloride	75-01-4	E611D	1.90 mg/kg	3.125 mg/kg	95.7	50.0	140			
		Xylene, m+p-	179601-23-1	E611D	3.85 mg/kg	6.25 mg/kg	96.8	50.0	140			
		Xylene, o-	95-47-6	E611D	1.92 mg/kg	3.125 mg/kg	96.5	50.0	140			
Hydrocarbons (QCLot: 1260696)											
WT2338943-002	Anonymous	F1 (C6-C10)		E581.F1	41.3 mg/kg	62.5 mg/kg	104	60.0	140			
Hydrocarbons (QCLot: 1260861)											
WT2339181-001	Anonymous	F2 (C10-C16)		E601.SG-L	ND mg/kg	656.4125 mg/kg	ND	60.0	140	MS-B		
		F3 (C16-C34)		E601.SG-L	ND mg/kg	1332.613 mg/kg	ND	60.0	140	MS-B		
		F4 (C34-C50)		E601.SG-L	466 mg/kg	761.4625 mg/kg	77.1	60.0	140			
Polycyclic Arom	atic Hydrocarbons((QCLot: 1260862)										
WT2339181-001	Anonymous	Acenaphthene	83-32-9	E641A	ND mg/kg	0.5 mg/kg	ND	50.0	140	MS-B		
		Acenaphthylene	208-96-8	E641A	0.385 mg/kg	0.5 mg/kg	97.0	50.0	140			
		Anthracene	120-12-7	E641A	0.388 mg/kg	0.5 mg/kg	97.8	50.0	140			
		Benz(a)anthracene	56-55-3	E641A	0.441 mg/kg	0.5 mg/kg	111	50.0	140			
		Benzo(a)pyrene	50-32-8	E641A	0.395 mg/kg	0.5 mg/kg	99.4	50.0	140			
		Benzo(b+j)fluoranthene	n/a	E641A	0.414 mg/kg	0.5 mg/kg	104	50.0	140			
		Benzo(g,h,i)perylene	191-24-2	E641A	0.371 mg/kg	0.5 mg/kg	93.4	50.0	140			
		Benzo(k)fluoranthene	207-08-9	E641A	0.420 mg/kg	0.5 mg/kg	106	50.0	140			
		Chrysene	218-01-9	E641A	0.399 mg/kg	0.5 mg/kg	100	50.0	140			
		Dibenz(a,h)anthracene	53-70-3	E641A	0.294 mg/kg	0.5 mg/kg	74.0	50.0	140			
		Fluoranthene	206-44-0	E641A	0.447 mg/kg	0.5 mg/kg	113	50.0	140			
		Fluorene	86-73-7	E641A	ND mg/kg	0.5 mg/kg	ND	50.0	140	MS-B		
		Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.378 mg/kg	0.5 mg/kg	95.3	50.0	140			
		Methylnaphthalene, 1-	90-12-0	E641A	ND mg/kg	0.5 mg/kg	ND	50.0	140	MS-B		
		Methylnaphthalene, 2-	91-57-6	E641A	ND mg/kg	0.5 mg/kg	ND	50.0	140	MS-B		
				FC44A	ND //	0.5 mg/kg	ND	50.0	140	MS-B		
		Naphthalene	91-20-3	E641A	ND mg/kg	o.o mg/kg	IND	30.0	140	IVIO-D		
		Phenanthrene	91-20-3 85-01-8	E641A	ND mg/kg	0.5 mg/kg	ND	50.0	140	MS-B		

Page : 17 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Sub-Matrix: Soil/So	Sub-Matrix: Soil/Solid						Matrix Spil	ke (MS) Report						
					Spi	ike	Recovery (%)	Recovery Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Organochlorine l	Pesticides (QCLot: 1	1260731)												
WT2338792-001	Anonymous	Aldrin	309-00-2	E660F	0.006 mg/kg	0.01 mg/kg	58.8	50.0	150					
		Chlordane, cis- (alpha)	5103-71-9	E660F	0.014 mg/kg	0.01 mg/kg	138	50.0	150					
		Chlordane, trans- (gamma)	5103-74-2	E660F	0.006 mg/kg	0.01 mg/kg	59.6	50.0	150					
		DDD, 2,4'-	53-19-0	E660F	0.012 mg/kg	0.01 mg/kg	120	50.0	150					
		DDD, 4,4'-	72-54-8	E660F	0.009 mg/kg	0.01 mg/kg	86.7	50.0	150					
		DDE, 2,4'-	3424-82-6	E660F	0.006 mg/kg	0.01 mg/kg	59.9	50.0	150					
		DDE, 4,4'-	72-55-9	E660F	0.010 mg/kg	0.01 mg/kg	104	50.0	150					
		DDT, 2,4'-	789-02-6	E660F	0.004 mg/kg	0.01 mg/kg	44.9	50.0	150	К				
		DDT, 4,4'-	50-29-3	E660F	0.004 mg/kg	0.01 mg/kg	43.9	50.0	150	К				
		Dieldrin	60-57-1	E660F	0.010 mg/kg	0.01 mg/kg	101	50.0	150					
		Endosulfan, alpha-	959-98-8	E660F	0.011 mg/kg	0.01 mg/kg	107	50.0	150					
		Endosulfan, beta-	33213-65-9	E660F	0.008 mg/kg	0.01 mg/kg	76.0	50.0	150					
		Endrin	72-20-8	E660F	0.004 mg/kg	0.01 mg/kg	46.2	50.0	150	K				
		Heptachlor	76-44-8	E660F	0.006 mg/kg	0.01 mg/kg	65.1	50.0	150					
		Heptachlor epoxide	1024-57-3	E660F	0.006 mg/kg	0.01 mg/kg	63.2	50.0	150					
		Hexachlorobenzene	118-74-1	E660F	0.009 mg/kg	0.01 mg/kg	90.8	50.0	150					
		Hexachlorobutadiene	87-68-3	E660F	0.009 mg/kg	0.01 mg/kg	94.5	50.0	150					
		Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.007 mg/kg	0.01 mg/kg	68.6	50.0	150					
		Hexachloroethane	67-72-1	E660F	0.007 mg/kg	0.01 mg/kg	70.4	50.0	150					
		Methoxychlor	72-43-5	E660F	0.004 mg/kg	0.01 mg/kg	36.5	50.0	150	К				

Qualifiers

Qualifier	Description
K	Matrix Spike recovery outside ALS DQO due to sample matrix effects.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Page : 18 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

ub-Matrix:					Reference Material (RM) Report					
					RM Target	Recovery (%)	Recovery I	Limits (%)		
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier	
Percent Passing	(QCLot: 1264002)									
	RM	Passing (19mm)		E181	100 %	100	90.0	110		
	RM	Passing (2.0mm)		E181	100 %	100	90.0	110		
	RM	Passing (25.4mm)		E181	100 %	100	90.0	110		
	RM	Passing (38.1mm)		E181	100 %	100	90.0	110		
	RM	Passing (4.75mm)		E181	100 %	100	90.0	110		
	RM	Passing (50.8mm)		E181	100 %	100	90.0	110		
	RM	Passing (76.2mm)		E181	100 %	100	90.0	110		
	RM	Passing (9.5mm)		E181	100 %	100	90.0	110		
Percent Passing	(QCLot: 1264003)									
	RM	Passing (0.05mm)		E182	54.08 %	103	90.0	110		
	RM	Passing (0.063mm)		E182	57.14 %	103	90.8	109		
	RM	Passing (0.075mm)		E182	60.15 %	102	91.4	109		
	RM	Passing (0.125mm)		E182	68.19 %	102	92.7	107		
	RM	Passing (0.149mm)		E182	72.05 %	102	93.1	107		
	RM	Passing (0.250mm)		E182	82.27 %	99.9	94.1	106		
	RM	Passing (0.420mm)		E182	89.94 %	99.4	94.6	105		
	RM	Passing (0.50mm)		E182	91.15 %	99.4	94.7	105		
	RM	Passing (0.841mm)	***	E182	95.64 %	99.6	94.9	105		
	RM	Passing (1.0mm)		E182	96.31 %	99.6	94.9	105		
Percent Passing	(QCLot: 1264004)									
	RM	Passing (0.002mm)		E183	24.64 %	93.0	76.0	124		
	RM	Passing (0.004mm)		E183	29.3 %	100	80.0	120		
	RM	Passing (0.005mm)		E183	31.16 %	98.9	82.0	118		
	RM	Passing (0.020mm)		E183	43.27 %	101	87.0	113		
	RM	Passing (0.0312mm)		E183	48.23 %	102	88.0	112		
Metals (QCLot:	260170)									
	RM	Antimony	7440-36-0	E440C	3.99 mg/kg	124	70.0	130		
	RM	Arsenic	7440-38-2	E440C	3.73 mg/kg	106	70.0	130		

Page : 19 of 19 Work Order : WT2338972

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix:						Refere	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery L	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot:	1260170) - continued								
	RM	Barium	7440-39-3	E440C	105 mg/kg	112	70.0	130	
	RM	Beryllium	7440-41-7	E440C	0.349 mg/kg	95.5	70.0	130	
	RM	Boron	7440-42-8	E440C	8.5 mg/kg	103	70.0	130	
	RM	Cadmium	7440-43-9	E440C	0.91 mg/kg	95.5	70.0	130	
	RM	Chromium	7440-47-3	E440C	101 mg/kg	98.2	70.0	130	
	RM	Cobalt	7440-48-4	E440C	6.9 mg/kg	101	70.0	130	
	RM	Copper	7440-50-8	E440C	123 mg/kg	102	70.0	130	
	RM	Lead	7439-92-1	E440C	267 mg/kg	105	70.0	130	
	RM	Molybdenum	7439-98-7	E440C	1.03 mg/kg	101	70.0	130	
	RM	Nickel	7440-02-0	E440C	26.7 mg/kg	101	70.0	130	
	RM	Silver	7440-22-4	E440C	4.06 mg/kg	87.6	70.0	130	
	RM	Thallium	7440-28-0	E440C	0.0786 mg/kg	93.7	70.0	130	
	RM	Uranium	7440-61-1	E440C	0.52 mg/kg	94.9	70.0	130	
	RM	Vanadium	7440-62-2	E440C	32.7 mg/kg	98.4	70.0	130	
	RM	Zinc	7440-66-6	E440C	297 mg/kg	100	70.0	130	

Street:

Phone:

647 882 7310

Sylvia Babiarz

Palmer Environmental Consulting Group Inc.

Contact and company name below will appear on the final report

Contact: Company: Report To

Postal Code:

Email 3 Email 2

City/Province:

Oakville, ON

871 Equestrian Court Unit 1

Company address below will appear on the final report

Select Distribution: 🖾 EMAIL

mail 1 or Fax sylvia.babiarz@pecg.ca

kalina.naydenova@pecg.ca sarah.vlantis@pecg.ca

Compare Results to Criteria on Report - provide details below if box checked Merge QC/QCI Reports with COA ☑ YES ☐ NO ☐ N/A Select Report Format: PDF EXCEL EDD (DIGITAL)

□ MAIL

☐ FAX

1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Same day [EZ] if received by 10am M-S - 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and not 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum Routine [R] if received by 3pm M-F - no surcharges apply

Date and Time Required for all E&P TATS:

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Reports / Recipients

Turnaround Time (TAT) Requested

COC Number: 20 -

Environmental Division WaterIco Work Order Reference WT2338972

Page

Telephone: +1 519 836 6(1)0

Failure to complete	Released by: SB		□ YES	Are samples for his	Are samples tak	Drinking													ALS Sample # (ALS use only)	ALS Lab Wor	LSD:	PO / AFE:	Job #:	ALS Account # / Quote #:		Contact:	Company:		invoice 10
WHITE - LABORATORY COPY REFER TO CAME FOR ALD COMMUNICATION Feature to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Cond	Date:	SHIPMENT REL		human consumption uses	Are samples taken from a Regulated DW System?	Drinking Water (DW) Samples ¹ (client use)	- n-cp	12	20-0-	V 23-3-4	, タンーター	23-21	22-2-0	x 23-2-0	20-2	20111	223-	23-1	Sample Idea (This descri	ALS Lab Work Order # (ALS use only):			1904320		Project Information	Accounting	Palmer Environmental Consulting Group Inc.	Copy of Invoice with Report	Same as Report To
is. Please fill in this form LEGIBLY		lient use)	CLION MIC	Con Too	WWW.	_	7	, ox	7		40	Ξ	20		See	+	5	1+	Sample Identification and/or Coordinates (This description will appear on the report)					ALS - WT23-PALM100-8	ion		ng Group Inc.	☑ YES □ NO	☐ YES ☑ NO
. By the use of this form the us	Received by:	_	in Sha.	C CO C . I TO	JOHN THE THE SOL OF THE WARD	(Excel COC only)													ites ort)	ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	0112	4.0%	Email 1 or Fax	Select Invoice Distribution:	
WHI er acknowledges and	AM	TIAL SHIPMENT	ovsky e	100/0	スペラ	Excel COC only)	<											28-Nov-23	Date (dd-mmm-yy)	A. Martin					and Gas Require	sarah.vlantis@pecg.ca	accounting@pecg.ca		Invoice Recipients
WHITE - LABORATORY COPY is and agrees with the Terms and C	Date: 11/29/	NITIAL SHIPMENT RECEPTION (ALS use only)	grabousty @ poligina	Junk	アンプート	ng from drop-dow	2					priz .		/				S:000	Time (hh:mm)	Sampler:			Routing Code:	PO#	Oil and Gas Required Fields (client use	cg.ca	д.са	EMAIL MAIL	ecipients
-	2	LS use only)	NO	SICK	7715	n below	~											soil soil	Sample Type	SB					use)			FAX	
YELLOW - CLIENT COPY	Time: 13:55		4.8	Cooler Custody Seals Intact:	Submission Comments identified on Sample Receipt Notification:	Coolin	(A)	-	7:	5	-	-	-	-	4		US	_	NUM	BER	OF	c	ON	IT/	AII	NE	R		
LIENT			-	Custo	ssion	Cooling Method:	5		5						2	÷	2		PHC/VO	С									
COPY	Received by:		IAL CO	dy Se.	Comm		5		1						7				PAH		_				4	4	Ind		
ane of	ed by:		OLER I	als Inta	ents id	NONE	5		-	1	7	1				-		1	ICP Meta				-	_	+	-	icate Fil		For all t
ho white	m		EMPER	C !	entifie	SAMP	1	<	-	1	-		1	1		-			pH	iciues	-				+	+	ered (F		sts with
NT COPY		FINAL	NITIAL COOLER TEMPERATURES *C	□ YES	on S	IGE 7										7			Grain Siz	ze Hydr	romet	er S	ieve		+	1	Preser		rush TA
		SHIP	o o	S 🗆 N/A	ample	E CE										1									1	1	ved (P)	Ar	Ts reque
۸	Date:	MENT		VA.	Receip	PICE PACKS																			1		or Filter	Analysis Request	sted, ple
SOL CELL	7	RECE	4	Sample	ot Notifi	ALS																					ed and F	Requ	ase cont
	12 MM	NOI	J. FINA	Custo	cation	G FROZEN	\vdash	-	-	\dashv	+	4	-	4	-	4	-	-				_		_	1	4	reserve	1se	act your
n	10	ALS	L COOL	dy Sea		SAMPLE RECEIPT DETAILS (ALS use only)		+	+	+	+	+	+	\dashv	+	+	+	+			-	-	-	-	+	-	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) between	1	AM to co
-	77	FINAL SHIPMENT RECEPTION (ALS use only)	FINAL COOLER TEMPERATURES *C	Sample Custody Seals Intact:	SA C				+		+	1	+	+	+	1	1	+			_		_	_	+	-	alaw		For all tests with rush TATs requested, please contact your AM to confirm availability.
		5	ERATI	1	OLING IN								1	1		1	1	1							t	1			ilability.
-	Time:	L	JRES *C	YES	□ NO				I	T	I	I	I			I		1	SAMP	LES	01	I H	OL	D	_		1		
AUG 2020 FRONT	0	1		□ N/A	8		-	-	1	1	1	1					T	E	XTEN	DED S	TOF	RAG	SE F	REC	QUI	RE			
ROM																1	1	5	SUSPEC	TED	HAZ	AR	D (see	no	tes		1	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLUW - CLIEN I CUPT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

SOL-953

Canada Toll Free: 1 800 668 9878

Page 2 of 2

	o de la company name heleu will appear on	the final report		Reports / Recipients	ecipients				Tuma	Turnaround Time (TAT) Requested	Time (TAT) F	eque	sted							
Report To	Palmer Environmental Consulting Group Inc.		Select Report Format:			EDD (DIGITAL)	Routine [R] if received by 3pm M-F - no surcharges apply	[R] if n	eceived	by 3pm	M-F-	no surc	harges	apply							
Contact:	Sylvia Babiarz	×	erge QC/QCI R	Merge QC/QCI Reports with COA ☑ YES □	O	□ N/A	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	P4] if re	ceived l	у Зрт	M-F-	20% ru	sh surch	arge n	inimur	-	AF	AFFIX ALS BARCODE LABEL HERE	ABEL I	HERE	
Phone:	647 882 7310	5	Compare Results to	o Criteria on Report -	 Compare Results to Criteria on Report - provide details below if box checked 		3 day [P3] if received by 3pm M+ - 25% rush surcharge minimum ○ 2 day [P2] if received by 3pm M+ - 50% rush surcharge minimum	3 day [P3] if received by 3pm M+- 25% rush surcharge minimum 1 2 day [P2] if received by 3pm M+- 50% rush surcharge minimum	eceived	by 3pm	M M	50% n	sh surd	harge i	ninimu	3 3		(ALS use only)	3		
	Company address below will appear on the final report		Select Distribution:	: W EMAIL	☐ MAIL ☐ FAX		1 day	E) if rea	eived b	y 3pm	M-F- 1	00% ru	sh surc	harge r	ninimu	3					
Street:	871 Equestrian Court Unit 1		Email 1 or Fax S	sylvia.babiarz@pecg.ca	cg.ca		Same day [E2] if received by 10am W-S - 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and non-	lay [E2] av apply	if recei	request	S on we	ekends	, statut	ory hol	days a	non br					
City/Province:	Oakville, ON	E	3000	kalina.naydenova@pecg.ca	pecg.ca		routine	tests						1				Later and property of the later and the late			
Postal Code:		E	Email 3 sa	sarah.vlantis@pecg.ca	g.ca		Da	Date and Time Required for all E&P (AIS:	ime Re	quired	of all E	SP IA	S	r			CHILLIA	HIPYY HILLINGS STORY		1	1
Invoice To	Same as Report To ☐ YES ☑ NO			Invoice Recipients	cipients				70	or all tes	ts with	ush TA	s reque	sted, p	ease or	ntact yo	our AM	For all tests with rush TATs requested, please contact your AM to confirm availability.		-	1
	Report		Select Invoice Distribution:	tribution: 🖸 EMAIL	☐ MAIL ☐	FAX							A	Analysis Request	s Rec	nest				1	1
Company:	ulting Group Inc		Email 1 or Fax a	accounting@pecg.ca	Са		R		Indic	ate Filte	red (F).	Preser	ved (P)	or Filte	red an	Prese	erved (F	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	RFI		
Contact:	Accounting	E	Email 2 s	sarah.vlantis@pecg.ca	g.ca		NE	L	\vdash	H	t	t	t	t	t	t	T		2011	-	. 110
	Project Information			nd Gas Required	Oil and Gas Required Fields (client use)	e)	Al		-	_	_		_						_	_	300
ALS Account # / Quote #			AFE/Cost Center.		PO#		NT			-		/e	_					O!	-	_	0
Job #:	1904320	Ma	Major/Minor Code:		Routing Code:		co				-	Sie						111	_		-41
PO / AFE:		R	Requisitioner:				F					nete	_					ON	_	_	1 IA
LSD:		Lo	ocation:				2 0	_	_	_		dron							_		LD
ALS Lab Wor	ALS Lab Work Order # (ALS use only):	A	ALS Contact:	A. Martin	Sampler: 8	SB		oc	tale	OLIVI D		ize Hy						/IPLE	NDE	ECT	FOI
ALS Sample #	Sample Identification and/or Coordinates (This description will appear on the report)	d/or Coordinates		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUN	PHC/V	PAH ICP Me	OC Pe	рН	Grain S						SAN	-		1903
	2			28-Nov-23	S. Octor	soil	-		6	-						-			-	+	
	23-5-2			_			~		-	-	c		1	-			-		+	+	
	23-5-20						~		-	_	C.		-	-		\vdash	-		+	+	
	27-5-3						+	2		5			1	\vdash		\vdash	\vdash		+	+	
	23-1-30			4	-	2	(%)	5		War.	-		-	\vdash	\vdash	\vdash	+		-	+	
	8		-	1			crej.	N	-	-	-	+	+			+	+		+	+	
								1		+	+	++		++-		+				++	
								\perp	-	+	+	+		+		+	\top		+	-	
								L	-	-	2			101	T -	0	0	PAND G DECRET DETAIL (ALC) (ALC)	-	-	
Drinkin	Drinking Water (DW) Samples¹ (client use)	Notes / Specify Lir	nits for result eva	Excel COC only)	Notes / Specify Limits for result evaluation by selecting from grop-down below (Excel COC only)	below	Coolir	Cooling Method:		□ NONE	NH .	☐ ICE	0	ETICE PACKS	200		☐ FROZEN	☐ COOLING INITIATED	TTATE	0	
Are samples ta	1	- A - A	フロロ	スペーク	いっという	100	Subm	Submission Comments identified on Sample Receipt Notification:	Comm	ents i	dentific	d on	Samp	e Rec	eipt 1	lotifica	ation:	□YES □NO			
		STUDING TO STATE SOLVE I SON O ILL	C. T/KI	Puller Jun	1 May	100	Coole	Cooler Custody Seals Intact:	Istody Seals Intact: TYES [als Int	act:	□ YES	S S	O N/A	Sa	mple (FINAL	Sample Custody Seals Intact: YES	URES °C	N/A	
Are samples fo	man						2.4			-		_				. 1	a				357
	SHIPMENT RELEASE (client use)		Z	ITIAL SHIPMEN	INITIAL SHIPMENT RECEPTION (ALS use only)	S use only)				1		FINA	HS T	PME	AT RE	CEP	NOI	only)			
Released by: SB		Time:	Received by:	3	Date; / na /oco	1000	Time:		Received by:	ed by		\	2	D	Date:	E	2	Va) 52/52 (WV	DIAS COLUMN	6	
The state of the s				117	11/2/11	C701	13:	1	-			1	()	H	L	Ş	0		0	3	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : WT2340897 Page : 1 of 4

Client : Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz : Andrew Martin

: 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

 Telephone
 : -- Telephone
 : +1 519 886 6910

 Project
 : 1904320
 Date Samples Received
 : 15-Dec-2023 11:00

 PO
 : -- Date Analysis Commenced
 : 19-Dec-2023

 C-O-C number
 : -- Issue Date
 : 21-Dec-2023 10:28

Sampler : SB Site : Aiax. ON

Quote number : WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received : 1
No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Jeremy Gingras Supervisor - Semi-Volatile Instrumentation Organics, Waterloo, Ontario

Page : 2 of 4 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page : 3 of 4 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results Evaluation

		Client	sample ID	23-5	 	 	
Matrix: Groundwater							
		Sampling	date/time	14-Dec-2023 17:00	 	 	
		S	ub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2340897-001	 	 	
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	83-32-9	E641A/WT	μg/L	<0.010	 	 	
Acenaphthylene	208-96-8	E641A/WT	μg/L	<0.010	 	 	
Anthracene	120-12-7	E641A/WT	μg/L	<0.010	 	 	
Benz(a)anthracene	56-55-3	E641A/WT	μg/L	<0.010	 	 	
Benzo(a)pyrene	50-32-8	E641A/WT	μg/L	<0.0050	 	 	
Benzo(b+j)fluoranthene	n/a	E641A/WT	μg/L	<0.010	 	 	
Benzo(g,h,i)perylene	191-24-2	E641A/WT	μg/L	<0.010	 	 	
Benzo(k)fluoranthene	207-08-9	E641A/WT	μg/L	<0.010	 	 	
Chrysene	218-01-9	E641A/WT	μg/L	<0.010	 	 	
Dibenz(a,h)anthracene	53-70-3	E641A/WT	μg/L	<0.0050	 	 	
Fluoranthene	206-44-0	E641A/WT	μg/L	<0.010	 	 	
Fluorene	86-73-7	E641A/WT	μg/L	<0.010	 	 	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A/WT	μg/L	<0.010	 	 	
Methylnaphthalene, 1-	90-12-0	E641A/WT	μg/L	<0.010	 	 	
Methylnaphthalene, 1+2-		E641A/WT	μg/L	<0.015	 	 	
Methylnaphthalene, 2-	91-57-6	E641A/WT	μg/L	<0.010	 	 	
Naphthalene	91-20-3	E641A/WT	μg/L	<0.050	 	 	
Phenanthrene	85-01-8	E641A/WT	μg/L	<0.020	 	 	
Pyrene	129-00-0	E641A/WT	μg/L	<0.010	 	 	
Polycyclic Aromatic Hydrocarbons St							
Chrysene-d12	1719-03-5	E641A/WT	%	117	 	 	
Naphthalene-d8	1146-65-2	E641A/WT	%	99.3	 	 	
Phenanthrene-d10	1517-22-2	E641A/WT	%	117	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 4 of 4 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

Summary of Guideline Limits

Analyte	CAS Number	Unit	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII			
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	83-32-9	μg/L	600 μg/L	1700 μg/L			
Acenaphthylene	208-96-8	μg/L	1.8 μg/L	1.8 μg/L			
Anthracene	120-12-7	μg/L	2.4 μg/L	2.4 μg/L			
Benz(a)anthracene	56-55-3	μg/L	4.7 μg/L	4.7 μg/L			
Benzo(a)pyrene	50-32-8	μg/L	0.81 μg/L	0.81 μg/L			
Benzo(b+j)fluoranthene	n/a	μg/L	0.75 μg/L	0.75 μg/L			
Benzo(g,h,i)perylene	191-24-2	μg/L	0.2 μg/L	0.2 μg/L			
Benzo(k)fluoranthene	207-08-9	μg/L	0.4 μg/L	0.4 μg/L			
Chrysene	218-01-9	μg/L	1 μg/L	1 μg/L			
Dibenz(a,h)anthracene	53-70-3	μg/L	0.52 μg/L	0.52 μg/L			
Fluoranthene	206-44-0	μg/L	130 μg/L	130 μg/L			
Fluorene	86-73-7	μg/L	400 μg/L	400 μg/L			
Indeno(1,2,3-c,d)pyrene	193-39-5	μg/L	0.2 μg/L	0.2 μg/L			
Methylnaphthalene, 1+2-		μg/L	1800 μg/L	1800 μg/L			
Methylnaphthalene, 1-	90-12-0	μg/L	1800 μg/L	1800 μg/L			
Methylnaphthalene, 2-	91-57-6	μg/L	1800 μg/L	1800 μg/L			
Naphthalene	91-20-3	μg/L	1400 μg/L	6400 μg/L			
Phenanthrene	85-01-8	μg/L	580 μg/L	580 μg/L			
Pyrene	129-00-0	μg/L	68 μg/L	68 μg/L			
Chrysene-d12	1719-03-5	%					
Naphthalene-d8	1146-65-2	%					
Phenanthrene-d10	1517-22-2	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

:WT2340897 **Work Order** Page : 1 of 5

Client Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz **Account Manager** : Andrew Martin

Address Address : 74 Berkeley Street : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone : +1 519 886 6910

Project : 1904320 **Date Samples Received** : 15-Dec-2023 11:00 : 21-Dec-2023 10:28

PO Issue Date C-O-C number ٠ ____ Sampler :SB

: Ajax, ON Quote number :WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received :1 No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

	alsglobal.com
<u>No</u> Quality Control Sample Frequency Outliers occur.	

Page : 3 of 5 Work Order · WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattix. water					L\	raiuation. * - i	noluling time excee	tuanice, •	- vviti iii	Tribiumy Tim
Analyte Group : Analytical Method	Method	Sampling Date	Exti	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]										
23-5	E641A	14-Dec-2023	19-Dec-2023	14	5 days	✓	20-Dec-2023	40 days	1 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	on: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency with	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS)							
PAHs by Hexane LVI GC-MS	E641A	1283237	1	3	33.3	5.0	✓
Method Blanks (MB)							
PAHs by Hexane LVI GC-MS	E641A	1283237	1	3	33.3	5.0	1

Page : 5 of 5 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PAHs by Hexane LVI GC-MS	E641A ALS Environmental - Waterloo	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	Waterioo			
Preparation Methods	Method / Lab	Matrix	Method Reference	Mathed Descriptions
Preparation Methods	Welliou / Lab	Matrix	Method Reference	Method Descriptions
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
				Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order WT2340897

Client : Palmer Environmental Consulting Group Inc. : Sylvia Babiarz

Address

:74 Berkeley Street

Toronto ON Canada M5V 1E3

Telephone

Contact

Project : 1904320 PO

C-O-C number

Sampler :SB

Site : Ajax, ON

Quote number : WT23-PALM100-8 - Ajax GW & Soil

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 4

Laboratory : ALS Environmental - Waterloo

Account Manager : Andrew Martin

Address :60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received : 15-Dec-2023 11:00

Date Analysis Commenced : 19-Dec-2023

Issue Date :21-Dec-2023 10:28

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories **Position** Laboratory Department

Jeremy Gingras Supervisor - Semi-Volatile Instrumentation Waterloo Organics, Waterloo, Ontario Page : 2 of 4
Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 4

 Work Order
 :
 WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
olycyclic Aromatic Hydrocarboi	ns (QCLot: 1283237)					
Acenaphthene	83-32-9	E641A	0.01	μg/L	<0.010	
Acenaphthylene	208-96-8	E641A	0.01	μg/L	<0.010	
Anthracene	120-12-7	E641A	0.01	μg/L	<0.010	
Benz(a)anthracene	56-55-3	E641A	0.01	μg/L	<0.010	
Benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	<0.0050	
Benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	<0.010	
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	<0.010	
Benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	<0.010	
Chrysene	218-01-9	E641A	0.01	μg/L	<0.010	
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	<0.0050	
Fluoranthene	206-44-0	E641A	0.01	μg/L	<0.010	
Fluorene	86-73-7	E641A	0.01	μg/L	<0.010	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	<0.010	
Methylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	<0.010	
Methylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	<0.010	
Naphthalene	91-20-3	E641A	0.05	μg/L	<0.050	
Phenanthrene	85-01-8	E641A	0.02	μg/L	<0.020	
Pyrene	129-00-0	E641A	0.01	μg/L	<0.010	

Page : 4 of 4 Work Order : WT2340897

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons (QC	Lot: 1283237)								
Acenaphthene	83-32-9	E641A	0.01	μg/L	0.5263 μg/L	105	50.0	140	
Acenaphthylene	208-96-8	E641A	0.01	μg/L	0.5263 μg/L	102	50.0	140	
Anthracene	120-12-7	E641A	0.01	μg/L	0.5263 μg/L	112	50.0	140	
Benz(a)anthracene	56-55-3	E641A	0.01	μg/L	0.5263 μg/L	119	50.0	140	
Benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	0.5263 μg/L	118	50.0	140	
Benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	0.5263 μg/L	94.8	50.0	140	
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	0.5263 μg/L	102	50.0	140	
Benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	0.5263 μg/L	103	50.0	140	
Chrysene	218-01-9	E641A	0.01	μg/L	0.5263 µg/L	119	50.0	140	
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	0.5263 µg/L	97.1	50.0	140	
Fluoranthene	206-44-0	E641A	0.01	μg/L	0.5263 µg/L	106	50.0	140	
Fluorene	86-73-7	E641A	0.01	μg/L	0.5263 µg/L	116	50.0	140	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	0.5263 µg/L	114	50.0	140	
Methylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	0.5263 µg/L	98.4	50.0	140	
Methylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	0.5263 μg/L	101	50.0	140	
Naphthalene	91-20-3	E641A	0.05	μg/L	0.5263 μg/L	98.7	50.0	140	
Phenanthrene	85-01-8	E641A	0.02	μg/L	0.5263 μg/L	107	50.0	140	
Pyrene	129-00-0	E641A	0.01	μg/L	0.5263 μg/L	110	50.0	140	

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 20

☐ EDD (DIGITAL) NO ON

Reports / Recipients

PDF S EXCEL

Select Report Format:

Contact and company name below will appear on the final report

Report To Company:

www.alsglobal.com

Palmer Environmental Consulting Group Inc.

Sylvia Babiarz 6478827310

Contact

Phone:

Compare Results to Criteria on Report - provide details below if box checked

Merge QC/QCI Reports with COA 3 YES

□ MAIL □ FAX

FMAIL

Select Distribution:

Company address below will appear on the final report

871 Equestrian Court Unit 1

Oakville, ON

City/Province: Postal Code: nvoice To

Street

Turnaround Time (TAT) Reque

ō

Page

	Turnaround Time (TAT) Requested	Environmental Division
Rout	Routine [R] if received by 3pm M-F - no surcharges apply	Waterloo
4 da	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimu	Work Order Reference
3 da	3 day [P3] if received by 3pm M-F - 25% rush surcharge minim 1 2 day [P2] if received by 3pm M-F - 50% rush surcharge minim	WT2340897
1 day Same fees r	1 day [E] if received by 3pm M-F - 100% rush surcharge minimi Same day [E2] if received by 10am M-S - 200% rush surcharge. Fees may apply to rush requests on weekends, statutory holidays : routine tests	
D	Date and Time Required for all E&P TATs:	
	For all tests with rush TATs requested, please	
	Analysis Re	
Я	Indicate Filtered (F), Preserved (P) or Filtered a	Tolomboo + F40 666 6040
NE		1 depriorie . + 1 519 666 6910
I		

0

Email 2 Kalina. nowyd anouaeth ca

sarah.vlantis@pecg.ca

Email 3

Email 1 or Fax sylvia.babiarz@pecg.ca

□ FAX

Select Invoice Distribution:

Email

Mail

☑ YES ☐ NO □ YES ☑ NO

Copy of Invoice with Report

Same as Report To

Palmer Environmental Consulting Group Inc.

Company

Email 1 or Fax accounting@pecg.ca

Invoice Recipients

SUSPECTED HAZARD (se N/A EXTENDED STORAGE RE G COOLING INITIATED FINAL COOLER TEMPERATURES °C □ YES SAMPLES ON HOLD ON | Sample Custody Seals Intact. □ YES SAMPLE RECEIPT DETAILS (ALS use only) Cooling Method: ☐ NONE ☐ ICE 12-1CE PACKS ☐ FROZEN Submission Comments identified on Sample Receipt Notification: □YES □ N/A INITIAL COOLER TEMPERATURES °C . Cooler Custody Seals Intact: HYE N NUMBER OF CONTAINER Sample Type D. Reg 153/04 Tabl 3 1/8C 30 Notes / Specify Limits for result evaluation by selecting from drop-down below SB Oil and Gas Required Fields (client use) S:00pm Routing Code: Time (hh:mm) Sampler: #Od sarah. Mantis@pecg.ca 4-12-23 (dd-mmm-bb) A. Martin (Excel COC only) Date Major/Minor Code AFE/Cost Center. ALS Contact: Requisitioner ocation: Email 2 Sample Identification and/or Coordinates (This description will appear on the report) Contate ALS Lab Work Order # (ALS use only): W72340897 ALS Account #1 Quote #: (VT23 - PALM) BD-Project Information Drinking Water (DW) Samples (client use) Are samples taken from a Regulated DW System? Are samples for human consumption/ use? Accounting ON S □ YES ALS Sample # (ALS use only) PO / AFE: Contact Job # SD

Received by: REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Date: 70 C 14 [23

Time:

SHIPMENT RELEASE (client use)

Released by: Sylvia Babiarz

☐ YES ☑ NO

are a portions of this form may delay analysis. Please fill in this form LEGIBLY: By the juse of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white- report copy. . If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

OR-604 MT

78:15

Date: 15/13/33

23

Received by:

Time:

INITIAL SHIPMENT RECEPTION (ALS use only

7.07

YELLOW - CLIENT COPY

WHITE - LABORATORY COPY

(5-Dec-2523

11:00

FINAL SHIPMENT RECEPTION (ALS use only)

Address

C-O-C number

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Issue Date

Work Order : **WT2340901** Page : 1 of 35

Client : Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz : Account Manager : Andrew Martin

: 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

: 22-Dec-2023 15:11

 Telephone
 : -- Telephone
 : +1 519 886 6910

 Project
 : 1904320
 Date Samples Received
 : 15-Dec-2023 11:00

PO : ---- Date Analysis Commenced : 18-Dec-2023

Sampler : SB Site : Ajax, ON

Quote number : WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received : 10

No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Andrea Armstrong	Department Manager - Air Quality and Volatiles	VOC, Waterloo, Ontario
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Metals, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μg/L	micrograms per litre

>: greater than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Qualifiers

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
SUR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for
	associated samples were deemed to be unaffected.

<: less than.

Page : 3 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			Oliant samula ID	00.4		1				
Cult Matrice Co			Client sample ID	23-1						
Sub-Matrix: Groundwater (Matrix: Water)		Se	ampling date/time	14-Dec-2023 12:00						
Analyte	Method/Lab	LOR	Unit	WT2340901-001		ON153/04	ON153/04	 		
rinaryto	Wictified/Edb	LON	O'm	W12040001-001		T3-NPGW-C-AI	T3-NPGW-F-AII	 		_
						1				
Dissolved Metals										
Antimony, dissolved	E421/WT	0.10	μg/L	<1.00	DLHC	20000 μg/L	20000 μg/L	 		
Arsenic, dissolved	E421/WT	0.10	μg/L	<1.00	DLHC	1900 µg/L	1900 μg/L	 		
Barium, dissolved	E421/WT	0.10	μg/L	332	DLHC	29000 µg/L	29000 μg/L	 		
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.200	DLHC	67 μg/L	67 μg/L	 		
Boron, dissolved	E421/WT	10	μg/L	109	DLHC	45000 μg/L	45000 μg/L	 		
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.338	DLHC	2.7 μg/L	2.7 μg/L	 		
Chromium, dissolved	E421/WT	0.50	μg/L	<5.00	DLHC	810 μg/L	810 μg/L	 		
Cobalt, dissolved	E421/WT	0.10	μg/L	23.2	DLHC	66 µg/L	66 µg/L	 		
Copper, dissolved	E421/WT	0.20	μg/L	2.61	DLHC	87 μg/L	87 μg/L	 		
Lead, dissolved	E421/WT	0.050	μg/L	<0.500	DLHC	25 μg/L	25 μg/L	 		
Molybdenum, dissolved	E421/WT	0.050	μg/L	12.5	DLHC	9200 μg/L	9200 μg/L	 		
Nickel, dissolved	E421/WT	0.50	μg/L	19.0	DLHC	490 μg/L	490 μg/L	 		
Selenium, dissolved	E421/WT	0.050	μg/L	2.74	DLHC	63 µg/L	63 µg/L	 		
Silver, dissolved	E421/WT	0.010	μg/L	<0.100	DLHC	1.5 μg/L	1.5 μg/L	 		
Sodium, dissolved	E421/WT	50	μg/L	316000	DLHC	2300000 μg/L	2300000 μg/L	 		
Thallium, dissolved	E421/WT	0.010	μg/L	0.115	DLHC	510 μg/L	510 μg/L	 		
Uranium, dissolved	E421/WT	0.010	μg/L	8.18	DLHC	420 μg/L	420 μg/L	 		
Vanadium, dissolved	E421/WT	0.50	μg/L	<5.00	DLHC	250 μg/L	250 μg/L	 		
Zinc, dissolved	E421/WT	1.0	μg/L	11.2	DLHC	1100 µg/L	1100 µg/L	 		
Dissolved metals filtration	EP421/WT		-	Field				 		
location										
Volatile Organic Compou										
Acetone	E611D/WT	20	μg/L	<20		130000 µg/L	130000 µg/L	 		
Benzene	E611D/WT	0.50	μg/L	<0.50		44 µg/L	430 μg/L	 		
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50		85000 μg/L	85000 μg/L	 		
Bromoform	E611D/WT	0.50	μg/L	<0.50		380 μg/L	770 μg/L	 		
Bromomethane	E611D/WT	0.50	μg/L	<0.50		5.6 μg/L	56 μg/L	 		
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20		0.79 μg/L	8.4 μg/L	 		
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50		630 μg/L	630 μg/L	 		
Chloroform	E611D/WT	0.50	μg/L	<0.50		2.4 μg/L	22 μg/L	 		
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50		82000 μg/L	82000 µg/L	 		
		•							•	

Page : 4 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Froject : I								
Analyte	Method/Lab	LOR	Unit	WT2340901-001 (Continued)	ON153/04 T3-NPGW-C-AI	ON153/04 T3-NPGW-F-AII	 	
Volatile Organic Compound	ls - Continued							
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 µg/L	67 μg/L	 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 µg/L	3100 μg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 μg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene, cis+trans-1,3-	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 µg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 µg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 µg/L	15 μg/L	 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 µg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	

Page : 5 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-001 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Hydrocarbons								
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L	 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370			 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	85.6			 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	84.1			 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	103			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	96.6			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 6 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

, , , , , , , , , , , , , , , , , , , ,			Client sample ID	23-2	7				
Sub-Matrix: Groundwater		S	ampling date/time	14-Dec-2023					
(Matrix: Water)				12:00			-		
Analyte	Method/Lab	LOR	Unit	WT2340901-002	ON153/04	ON153/04	 		
					T3-NPGW-C-AI	T3-NPGW-F-AII			
					I				
Dissolved Metals								I	
Antimony, dissolved	E421/WT	0.10	μg/L	1.24	20000 μg/L	20000 μg/L	 		
Arsenic, dissolved	E421/WT	0.10	μg/L	0.68	1900 µg/L	1900 µg/L	 		
Barium, dissolved	E421/WT	0.10	μg/L	171	29000 μg/L	29000 μg/L	 		
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.020	67 μg/L	67 μg/L	 		
Boron, dissolved	E421/WT	10	μg/L	160	45000 μg/L	45000 μg/L	 		
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.122	2.7 μg/L	2.7 μg/L	 		
Chromium, dissolved	E421/WT	0.50	μg/L	<0.50	810 μg/L	810 μg/L	 		
Cobalt, dissolved	E421/WT	0.10	μg/L	18.5	66 μg/L	66 μg/L	 		
Copper, dissolved	E421/WT	0.20	μg/L	3.60	87 μg/L	87 μg/L	 		
Lead, dissolved	E421/WT	0.050	μg/L	0.055	25 μg/L	25 μg/L	 		
Molybdenum, dissolved	E421/WT	0.050	μg/L	18.8	9200 μg/L	9200 μg/L	 		
Nickel, dissolved	E421/WT	0.50	μg/L	11.5	490 μg/L	490 μg/L	 		
Selenium, dissolved	E421/WT	0.050	μg/L	2.66	63 μg/L	63 µg/L	 		
Silver, dissolved	E421/WT	0.010	μg/L	<0.010	1.5 μg/L	1.5 µg/L	 		
Sodium, dissolved	E421/WT	50	μg/L	119000	2300000 µg/L	2300000 µg/L	 		
Thallium, dissolved	E421/WT	0.010	μg/L	0.063	510 μg/L	510 μg/L	 		
Uranium, dissolved	E421/WT	0.010	μg/L	4.25	420 μg/L	420 μg/L	 		
Vanadium, dissolved	E421/WT	0.50	μg/L	0.82	250 μg/L	250 μg/L	 		
Zinc, dissolved	E421/WT	1.0	μg/L	20.7	1100 µg/L	1100 μg/L	 		
Dissolved metals filtration	EP421/WT		-	Field			 		
location									
Volatile Organic Compour	nds								
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 µg/L	 		
Benzene	E611D/WT	0.50	μg/L	<0.50	44 µg/L	430 µg/L	 		
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L	 		
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 µg/L	770 μg/L	 		
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 µg/L	56 μg/L	 		
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 µg/L	8.4 µg/L	 		
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L	 		
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 μg/L	22 μg/L	 		
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 μg/L	82000 μg/L	 		
			1-3-		10				

Page : 7 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Froject : I								
Analyte	Method/Lab	LOR	Unit	WT2340901-002 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Volatile Organic Compound	ds - Continued							
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 µg/L	9600 μg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 μg/L	67 μg/L	 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 µg/L	3100 μg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene, cis+trans-1,3-	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 µg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 μg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 µg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 μg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 μg/L	15 μg/L	 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 µg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	

Page : 8 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project :	1904320							
Analyte	Method/Lab	LOR	Unit	WT2340901-002 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Hydrocarbons								
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L	 	
F2-Naphthalene	EC600SG/WT	100	μg/L	<100			 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F3-PAH	EC600SG/WT	250	μg/L	<250			 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370			 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	92.8			 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	63.6			 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	103			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.0			 	
Polycyclic Aromatic Hydro	carbons							
Acenaphthene	E641A/WT	0.010	μg/L	<0.016 DL	M 600 μg/L	1700 μg/L	 	
Acenaphthylene	E641A/WT	0.010	μg/L	<0.010	1.8 µg/L	1.8 µg/L	 	
Anthracene	E641A/WT	0.010	μg/L	<0.010	2.4 µg/L	2.4 µg/L	 	
Benz(a)anthracene	E641A/WT	0.010	μg/L	<0.010	4.7 μg/L	4.7 µg/L	 	
Benzo(a)pyrene	E641A/WT	0.0050	μg/L	<0.0050	0.81 µg/L	0.81 µg/L	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.75 μg/L	0.75 μg/L	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Benzo(k)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.4 μg/L	0.4 µg/L	 	
Chrysene	E641A/WT	0.010	μg/L	<0.010	1 μg/L	1 μg/L	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	μg/L	<0.0050	0.52 μg/L	0.52 μg/L	 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.010	130 µg/L	130 µg/L	 	
Fluorene	E641A/WT	0.010	μg/L	<0.010	400 μg/L	400 μg/L	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010	0.2 µg/L	0.2 μg/L	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	1800 µg/L	1800 μg/L	 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	<0.010	1800 µg/L	1800 μg/L	 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	<0.010	1800 µg/L	1800 μg/L	 	
Naphthalene	E641A/WT	0.050	μg/L	<0.050	1400 µg/L	6400 µg/L	 	
Phenanthrene	E641A/WT	0.020	μg/L	<0.020	580 μg/L	580 μg/L	 	
Pyrene	E641A/WT	0.010	μg/L	<0.010	68 μg/L	68 μg/L	 	
Chrysene-d12	E641A/WT	0.1	%	118			 	

Page : 9 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-002	ON153/04	ON153/04	 	
rinaryte	Wicthod/Edb	Lon	O m	(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII	 	
				(Continuou)	1	10111 011 7111		
Polycyclic Aromatic Hydro	carbons Surrogate	es - Continued						
Naphthalene-d8	E641A/WT	0.1	%	100			 	
Phenanthrene-d10	E641A/WT	0.1	%	115			 	
Organochlorine Pesticides								
Aldrin	E660F/WT	0.0080	μg/L	<0.0080	8.5 µg/L	8.5 µg/L	 	
Chlordane, cis- (alpha)	E660F/WT	0.0080	μg/L	<0.0080			 	
Chlordane, total	E660F/WT	0.011	μg/L	<0.011	28 μg/L	28 μg/L	 	
Chlordane, trans- (gamma)	E660F/WT	0.0080	μg/L	<0.0080			 	
DDD, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDD, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDD, total	E660F/WT	0.0060	μg/L	<0.0060	45 μg/L	45 μg/L	 	
DDE, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDE, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDE, total	E660F/WT	0.0060	μg/L	<0.0060	20 μg/L	20 μg/L	 	
DDT, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, total	E660F/WT	0.0060	μg/L	<0.0060	2.8 µg/L	2.8 μg/L	 	
Dieldrin	E660F/WT	0.0080	μg/L	<0.0080	0.75 μg/L	0.75 μg/L	 	
Endosulfan, alpha-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, beta-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, total	E660F/WT	0.010	μg/L	<0.010	1.5 µg/L	1.5 μg/L	 	
Endrin	E660F/WT	0.010	μg/L	<0.010	0.48 μg/L	0.48 μg/L	 	
Heptachlor epoxide	E660F/WT	0.0080	μg/L	<0.0080	0.048 μg/L	0.048 μg/L	 	
Heptachlor	E660F/WT	0.0080	μg/L	<0.0080	2.5 μg/L	2.5 μg/L	 	
Hexachlorobenzene	E660F/WT	0.0080	μg/L	<0.0080	3.1 µg/L	3.1 μg/L	 	
Hexachlorobutadiene	E660F/WT	0.0080	μg/L	<0.0080	0.44 μg/L	4.5 μg/L	 	
Hexachlorocyclohexane,	E660F/WT	0.0080	μg/L	<0.0080	1.2 μg/L	1.2 μg/L	 	
gamma-								
Hexachloroethane	E660F/WT	0.0080	μg/L	<0.0080	94 μg/L	200 μg/L	 	
Methoxychlor	E660F/WT	0.0080	μg/L	<0.0080	6.5 μg/L	6.5 μg/L	 	
Decachlorobiphenyl	E660F/WT	0.10	%	99.2			 	
Tetrachloro-m-xylene	E660F/WT	0.10	%	69.2			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Page : 10 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 11 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			Oliant samula ID	22.2	_				
			Client sample ID	23-3	-				
Sub-Matrix: Groundwater		Sa	ampling date/time	14-Dec-2023 12:00					
(Matrix: Water) Analyte	Method/Lab	LOR	Unit	WT2340901-003	ON153/04	ON450/04	 	I	
Analyte	Metriou/Lab	LOR	Offit	W12340901-003	T3-NPGW-C-AI	ON153/04 T3-NPGW-F-AII	 		
					I S-NI GW-C-AI	13-111 011-1-211			
Dissolved Metals									
Antimony, dissolved	E421/WT	0.10	μg/L	1.14	20000 μg/L	20000 μg/L	 		
Arsenic, dissolved	E421/WT	0.10	μg/L	0.53	1900 µg/L	1900 μg/L	 		
Barium, dissolved	E421/WT	0.10	μg/L	205	29000 μg/L	29000 µg/L	 		
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.020	67 μg/L	67 μg/L	 		
Boron, dissolved	E421/WT	10	μg/L	135	45000 μg/L	45000 μg/L	 		
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.0477	2.7 µg/L	2.7 µg/L	 		
Chromium, dissolved	E421/WT	0.50	μg/L	<0.50	810 µg/L	810 µg/L	 		
Cobalt, dissolved	E421/WT	0.10	μg/L	7.04	66 µg/L	66 µg/L	 		
Copper, dissolved	E421/WT	0.20	μg/L	1.88	87 μg/L	87 μg/L	 		
Lead, dissolved	E421/WT	0.050	μg/L	<0.050	25 μg/L	25 μg/L	 		
Molybdenum, dissolved	E421/WT	0.050	μg/L	18.8	9200 μg/L	9200 μg/L	 		
Nickel, dissolved	E421/WT	0.50	μg/L	6.62	490 μg/L	490 μg/L	 		
Selenium, dissolved	E421/WT	0.050	μg/L	2.30	63 µg/L	63 µg/L	 		
Silver, dissolved	E421/WT	0.010	μg/L	<0.010	1.5 µg/L	1.5 µg/L	 		
Sodium, dissolved	E421/WT	50	μg/L	262000	2300000 μg/L	2300000 μg/L	 		
Thallium, dissolved	E421/WT	0.010	μg/L	0.052	510 μg/L	510 μg/L	 		
Uranium, dissolved	E421/WT	0.010	μg/L	4.64	420 μg/L	420 μg/L	 		
Vanadium, dissolved	E421/WT	0.50	μg/L	0.91	250 μg/L	250 μg/L	 		
Zinc, dissolved	E421/WT	1.0	μg/L	8.1	1100 µg/L	1100 μg/L	 		
Dissolved metals filtration	EP421/WT		-	Field			 		
location									
Volatile Organic Compour									
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 µg/L	 		
Benzene	E611D/WT	0.50	μg/L	<0.50	44 μg/L	430 µg/L	 		
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L	 		
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 µg/L	770 μg/L	 		
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 μg/L	56 μg/L	 		
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 μg/L	8.4 μg/L	 		
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L	 		
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 μg/L	22 μg/L	 		
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 μg/L	82000 µg/L	 		

Page : 12 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Froject : I									
Analyte	Method/Lab	LOR	Unit	WT2340901-003 (Continued)	ON153/04 T3-NPGW-C-AI	ON153/04 T3-NPGW-F-AII	-	 	
Volatile Organic Compound	ls - Continued								
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L		 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L		 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 μg/L		 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 µg/L	67 μg/L		 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L		 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 μg/L	3100 μg/L		 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	12 μg/L		 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L		 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L		 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L		 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L		 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L		 	
Dichloropropylene, cis+trans-1,3-	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L		 	
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30				 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30				 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L		 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L		 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 μg/L		 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L		 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 µg/L	1400 μg/L		 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 μg/L	9100 μg/L		 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L		 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 µg/L	15 μg/L		 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L		 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L		 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 μg/L	6700 μg/L		 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L		 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L		 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L		 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L		 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40				 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30				 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L		 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0				 	

Page : 13 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Analyte	Method/Lab	LOR	Unit	WT2340901-003 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Hydrocarbons								
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L	 	
F2-Naphthalene	EC600SG/WT	100	μg/L	<100			 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F3-PAH	EC600SG/WT	250	μg/L	<250			 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370			 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	92.4			 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	78.8			 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	102			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	96.9			 	
Polycyclic Aromatic Hydro	carbons							
Acenaphthene	E641A/WT	0.010	μg/L	<0.010	600 μg/L	1700 μg/L	 	
Acenaphthylene	E641A/WT	0.010	μg/L	<0.010	1.8 µg/L	1.8 μg/L	 	
Anthracene	E641A/WT	0.010	μg/L	<0.010	2.4 μg/L	2.4 μg/L	 	
Benz(a)anthracene	E641A/WT	0.010	μg/L	<0.010	4.7 μg/L	4.7 μg/L	 	
Benzo(a)pyrene	E641A/WT	0.0050	μg/L	<0.0050	0.81 µg/L	0.81 μg/L	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.75 μg/L	0.75 μg/L	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Benzo(k)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.4 μg/L	0.4 μg/L	 	
Chrysene	E641A/WT	0.010	μg/L	<0.010	1 μg/L	1 μg/L	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	μg/L	<0.0050	0.52 μg/L	0.52 μg/L	 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.010	130 μg/L	130 μg/L	 	
Fluorene	E641A/WT	0.010	μg/L	<0.010	400 μg/L	400 μg/L	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Naphthalene	E641A/WT	0.050	μg/L	<0.050	1400 μg/L	6400 µg/L	 	
Phenanthrene	E641A/WT	0.020	μg/L	<0.020	580 μg/L	580 μg/L	 	
Pyrene	E641A/WT	0.010	μg/L	<0.010	68 μg/L	68 μg/L	 	
Chrysene-d12	E641A/WT	0.1	%	112			 	

Page : 14 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-003	ON153/04	ON153/04	 	 _
Analyte	Wicthod/Lab	LON	O m	(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII	 	
				(Continuou)	1	10111 011 7111		
Polycyclic Aromatic Hydro	carbons Surrogate	es - Continued						
Naphthalene-d8	E641A/WT	0.1	%	98.2			 	
Phenanthrene-d10	E641A/WT	0.1	%	116			 	
Organochlorine Pesticides								
Aldrin	E660F/WT	0.0080	μg/L	<0.0080	8.5 µg/L	8.5 µg/L	 	
Chlordane, cis- (alpha)	E660F/WT	0.0080	μg/L	<0.0080			 	
Chlordane, total	E660F/WT	0.011	μg/L	<0.011	28 μg/L	28 μg/L	 	
Chlordane, trans- (gamma)	E660F/WT	0.0080	μg/L	<0.0080			 	
DDD, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDD, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDD, total	E660F/WT	0.0060	μg/L	<0.0060	45 μg/L	45 μg/L	 	
DDE, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDE, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDE, total	E660F/WT	0.0060	μg/L	<0.0060	20 μg/L	20 μg/L	 	
DDT, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, total	E660F/WT	0.0060	μg/L	<0.0060	2.8 µg/L	2.8 μg/L	 	
Dieldrin	E660F/WT	0.0080	μg/L	<0.0080	0.75 μg/L	0.75 μg/L	 	
Endosulfan, alpha-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, beta-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, total	E660F/WT	0.010	μg/L	<0.010	1.5 µg/L	1.5 μg/L	 	
Endrin	E660F/WT	0.010	μg/L	<0.010	0.48 μg/L	0.48 μg/L	 	
Heptachlor epoxide	E660F/WT	0.0080	μg/L	<0.0080	0.048 μg/L	0.048 μg/L	 	
Heptachlor	E660F/WT	0.0080	μg/L	<0.0080	2.5 μg/L	2.5 μg/L	 	
Hexachlorobenzene	E660F/WT	0.0080	μg/L	<0.0080	3.1 µg/L	3.1 μg/L	 	
Hexachlorobutadiene	E660F/WT	0.0080	μg/L	<0.0080	0.44 μg/L	4.5 μg/L	 	
Hexachlorocyclohexane,	E660F/WT	0.0080	μg/L	<0.0080	1.2 μg/L	1.2 μg/L	 	
gamma-								
Hexachloroethane	E660F/WT	0.0080	μg/L	<0.0080	94 μg/L	200 μg/L	 	
Methoxychlor	E660F/WT	0.0080	μg/L	<0.0080	6.5 μg/L	6.5 µg/L	 	
Decachlorobiphenyl	E660F/WT	0.10	%	124			 	
Tetrachloro-m-xylene	E660F/WT	0.10	%	76.6			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Page : 15 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 16 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

			Client sample ID	23-3D	1			
Sub-Matrix: Groundwater		Sa	ampling date/time	14-Dec-2023	1			
(Matrix: Water)				12:00				
Analyte	Method/Lab	LOR	Unit	WT2340901-004	ON153/04	ON153/04	 	
					T3-NPGW-C-AI	T3-NPGW-F-AII		
					ı			
Polycyclic Aromatic Hydroc	arbons							
Acenaphthene	E641A/WT	0.010	μg/L	<0.010	600 μg/L	1700 μg/L	 	
Acenaphthylene	E641A/WT	0.010	μg/L	<0.010	1.8 µg/L	1.8 µg/L	 	
Anthracene	E641A/WT	0.010	μg/L	<0.010	2.4 µg/L	2.4 μg/L	 	
Benz(a)anthracene	E641A/WT	0.010	μg/L	<0.010	4.7 μg/L	4.7 μg/L	 	
Benzo(a)pyrene	E641A/WT	0.0050	μg/L	<0.0050	0.81 μg/L	0.81 μg/L	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.75 μg/L	0.75 μg/L	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Benzo(k)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.4 μg/L	0.4 μg/L	 	
Chrysene	E641A/WT	0.010	μg/L	<0.010	1 μg/L	1 μg/L	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	μg/L	<0.0050	0.52 μg/L	0.52 μg/L	 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.010	130 μg/L	130 μg/L	 	
Fluorene	E641A/WT	0.010	μg/L	<0.010	400 μg/L	400 μg/L	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Naphthalene	E641A/WT	0.050	μg/L	<0.050	1400 μg/L	6400 μg/L	 	
Phenanthrene	E641A/WT	0.020	μg/L	<0.020	580 μg/L	580 μg/L	 	
Pyrene	E641A/WT	0.010	μg/L	<0.010	68 μg/L	68 μg/L	 	
Chrysene-d12	E641A/WT	0.1	%	112			 	
Naphthalene-d8	E641A/WT	0.1	%	95.6			 	
Phenanthrene-d10	E641A/WT	0.1	%	112			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 17 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			Client sample ID	23-4						
Sub-Matrix: Groundwater		Si	ampling date/time	14-Dec-2023	-					
(Matrix: Water)			ampining data anno	12:00						
Analyte	Method/Lab	LOR	Unit	WT2340901-005	ON153/04	ON153/04				
					T3-NPGW-C-AI	T3-NPGW-F-AII				
					I					
Dissolved Metals									I	
Antimony, dissolved	E421/WT	0.10	μg/L	1.45	20000 µg/L	20000 μg/L				
Arsenic, dissolved	E421/WT	0.10	μg/L	1.04	1900 μg/L	1900 µg/L				
Barium, dissolved	E421/WT	0.10	μg/L	174	29000 μg/L	29000 μg/L				
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.020	67 μg/L	67 μg/L				
Boron, dissolved	E421/WT	10	μg/L	180	45000 μg/L	45000 μg/L				
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.0112	2.7 μg/L	2.7 μg/L				
Chromium, dissolved	E421/WT	0.50	μg/L	<0.50	810 μg/L	810 µg/L				
Cobalt, dissolved	E421/WT	0.10	μg/L	0.40	66 μg/L	66 μg/L				
Copper, dissolved	E421/WT	0.20	μg/L	3.53	87 μg/L	87 μg/L				
Lead, dissolved	E421/WT	0.050	μg/L	<0.050	25 μg/L	25 μg/L				
Molybdenum, dissolved	E421/WT	0.050	μg/L	15.0	9200 μg/L	9200 μg/L				
Nickel, dissolved	E421/WT	0.50	μg/L	0.87	490 μg/L	490 μg/L				
Selenium, dissolved	E421/WT	0.050	μg/L	0.878	63 μg/L	63 µg/L				
Silver, dissolved	E421/WT	0.010	μg/L	<0.010	1.5 μg/L	1.5 µg/L				
Sodium, dissolved	E421/WT	50	μg/L	23000	2300000 μg/L	2300000 µg/L				
Thallium, dissolved	E421/WT	0.010	μg/L	0.030	510 μg/L	510 μg/L				
Uranium, dissolved	E421/WT	0.010	μg/L	2.37	420 μg/L	420 μg/L				
Vanadium, dissolved	E421/WT	0.50	μg/L	1.50	250 μg/L	250 μg/L				
Zinc, dissolved	E421/WT	1.0	μg/L	13.1	1100 μg/L	1100 μg/L				
Dissolved metals filtration	EP421/WT		-	Field						
location										
Volatile Organic Compour	nds									
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 µg/L				
Benzene	E611D/WT	0.50	μg/L	<0.50	44 μg/L	430 μg/L				
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L				
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 μg/L	770 μg/L				
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 μg/L	56 μg/L				
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 μg/L	8.4 μg/L				
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L				
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 µg/L	22 μg/L				
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 µg/L	82000 µg/L				
	1	I		I	1	1	I.	I	I .	

Page : 18 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Froject : I								
Analyte	Method/Lab	LOR	Unit	WT2340901-005 (Continued)	ON153/04 T3-NPGW-C-AI	ON153/04 T3-NPGW-F-AII	 	
Volatile Organic Compound	ls - Continued							
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 µg/L	67 μg/L	 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 μg/L	3100 μg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene, cis+trans-1,3-	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 μg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 µg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 µg/L	15 μg/L	 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 µg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	

Page : 19 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Analyte	Method/Lab	LOR	Unit	WT2340901-005	ON153/04	ON153/04	 	
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII		
Hydrocarbons								
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L	 	
F2-Naphthalene	EC600SG/WT	100	μg/L	<100			 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F3-PAH	EC600SG/WT	250	μg/L	<250			 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370			 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	91.6			 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	78.7			 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	102			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	96.9			 	
Polycyclic Aromatic Hydro	carbons							
Acenaphthene	E641A/WT	0.010	μg/L	<0.010	600 µg/L	1700 μg/L	 	
Acenaphthylene	E641A/WT	0.010	μg/L	<0.010	1.8 µg/L	1.8 µg/L	 	
Anthracene	E641A/WT	0.010	μg/L	<0.010	2.4 μg/L	2.4 μg/L	 	
Benz(a)anthracene	E641A/WT	0.010	μg/L	<0.010	4.7 μg/L	4.7 μg/L	 	
Benzo(a)pyrene	E641A/WT	0.0050	μg/L	<0.0050	0.81 μg/L	0.81 μg/L	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.75 μg/L	0.75 μg/L	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Benzo(k)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.4 μg/L	0.4 μg/L	 	
Chrysene	E641A/WT	0.010	μg/L	<0.010	1 μg/L	1 μg/L	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	μg/L	<0.0050	0.52 μg/L	0.52 μg/L	 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.010	130 μg/L	130 µg/L	 	
Fluorene	E641A/WT	0.010	μg/L	<0.010	400 μg/L	400 μg/L	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L	 	
Naphthalene	E641A/WT	0.050	μg/L	<0.050	1400 μg/L	6400 μg/L	 	
Phenanthrene	E641A/WT	0.020	μg/L	<0.020	580 μg/L	580 μg/L	 	
Pyrene	E641A/WT	0.010	μg/L	<0.010	68 μg/L	68 μg/L	 	
Chrysene-d12	E641A/WT	0.1	%	124			 	

Page : 20 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-005	ON153/04	ON153/04	-	 	
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII			
					I				
Polycyclic Aromatic Hydro	ocarbons Surrogate	s - Continued							
Naphthalene-d8	E641A/WT	0.1	%	105				 	
Phenanthrene-d10	E641A/WT	0.1	%	122				 	
Organochlorine Pesticides	;								
Aldrin	E660F/WT	0.0080	μg/L	<0.0080	8.5 µg/L	8.5 µg/L		 	
Chlordane, cis- (alpha)	E660F/WT	0.0080	μg/L	<0.0080				 	
Chlordane, total	E660F/WT	0.011	μg/L	<0.011	28 μg/L	28 μg/L		 	
Chlordane, trans- (gamma)	E660F/WT	0.0080	μg/L	<0.0080				 	
DDD, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDD, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDD, total	E660F/WT	0.0060	μg/L	<0.0060	45 μg/L	45 μg/L		 	
DDE, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDE, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDE, total	E660F/WT	0.0060	μg/L	<0.0060	20 μg/L	20 μg/L		 	
DDT, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDT, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040				 	
DDT, total	E660F/WT	0.0060	μg/L	<0.0060	2.8 μg/L	2.8 μg/L		 	
Dieldrin	E660F/WT	0.0080	μg/L	<0.0080	0.75 μg/L	0.75 μg/L		 	
Endosulfan, alpha-	E660F/WT	0.0070	μg/L	<0.0070				 	
Endosulfan, beta-	E660F/WT	0.0070	μg/L	<0.0070				 	
Endosulfan, total	E660F/WT	0.010	μg/L	<0.010	1.5 μg/L	1.5 µg/L		 	
Endrin	E660F/WT	0.010	μg/L	<0.010	0.48 μg/L	0.48 μg/L		 	
Heptachlor epoxide	E660F/WT	0.0080	μg/L	<0.0080	0.048 µg/L	0.048 µg/L		 	
Heptachlor	E660F/WT	0.0080	μg/L	<0.0080	2.5 μg/L	2.5 µg/L		 	
Hexachlorobenzene	E660F/WT	0.0080	μg/L	<0.0080	3.1 µg/L	3.1 µg/L		 	
Hexachlorobutadiene	E660F/WT	0.0080	μg/L	<0.0080	0.44 μg/L	4.5 µg/L		 	
Hexachlorocyclohexane,	E660F/WT	0.0080	μg/L	<0.0080	1.2 μg/L	1.2 µg/L		 	
gamma-									
Hexachloroethane	E660F/WT	0.0080	μg/L	<0.0080	94 μg/L	200 μg/L		 	
Methoxychlor	E660F/WT	0.0080	μg/L	<0.0080	6.5 μg/L	6.5 µg/L		 	
Decachlorobiphenyl	E660F/WT	0.10	%	120				 	
Tetrachloro-m-xylene	E660F/WT	0.10	%	66.6				 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Page : 21 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 22 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results								
			Client sample ID	23-4D				
Sub-Matrix: Groundwater		Sa	ampling date/time	14-Dec-2023				
(Matrix: Water)				12:00				
Analyte	Method/Lab	LOR	Unit	WT2340901-006	ON153/04	ON153/04	 	
					T3-NPGW-C-AI	T3-NPGW-F-AII		
Organochlorine Pesticides	6							
Aldrin	E660F/WT	0.0080	μg/L	<0.0080	8.5 μg/L	8.5 μg/L	 	
Chlordane, cis- (alpha)	E660F/WT	0.0080	μg/L	<0.0080			 	
Chlordane, total	E660F/WT	0.0000	μg/L	<0.011	28 µg/L	28 μg/L	 	
Chlordane, trans- (gamma)	E660F/WT	0.0080	μg/L	<0.0080	20 μg/L 		 	
DDD, 2,4'-	E660F/WT	0.0040		<0.0040			 	
DDD, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDD, total	E660F/WT	0.0040	μg/L	<0.0060	45 µg/L	45 μg/L	 	
DDE, 2,4'-	E660F/WT	0.0060	μg/L	<0.0040	45 μg/L 	45 μg/L 	 	
DDE, 4,4'-	E660F/WT		μg/L	<0.0040				
DDE, 4,4 -	E660F/WT	0.0040	μg/L	<0.0040			 	
		0.0060	μg/L "		20 μg/L	20 μg/L	 	
DDT, 2,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, 4,4'-	E660F/WT	0.0040	μg/L	<0.0040			 	
DDT, total	E660F/WT	0.0060	µg/L	<0.0060	2.8 µg/L	2.8 µg/L	 	
Dieldrin	E660F/WT	0.0080	μg/L	<0.0080	0.75 μg/L	0.75 μg/L	 	
Endosulfan, alpha-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, beta-	E660F/WT	0.0070	μg/L	<0.0070			 	
Endosulfan, total	E660F/WT	0.010	μg/L	<0.010	1.5 μg/L	1.5 µg/L	 	
Endrin	E660F/WT	0.010	μg/L	<0.010	0.48 µg/L	0.48 μg/L	 	
Heptachlor epoxide	E660F/WT	0.0080	μg/L	<0.0080	0.048 μg/L	0.048 µg/L	 	
Heptachlor	E660F/WT	0.0080	μg/L	<0.0080	2.5 μg/L	2.5 µg/L	 	
Hexachlorobenzene	E660F/WT	0.0080	μg/L	<0.0080	3.1 μg/L	3.1 µg/L	 	
Hexachlorobutadiene	E660F/WT	0.0080	μg/L	<0.0080	0.44 µg/L	4.5 µg/L	 	
Hexachlorocyclohexane,	E660F/WT	0.0080	μg/L	<0.0080	1.2 μg/L	1.2 µg/L	 	
gamma-								
Hexachloroethane	E660F/WT	0.0080	μg/L	<0.0080	94 μg/L	200 μg/L	 	
Methoxychlor	E660F/WT	0.0080	μg/L	<0.0080	6.5 µg/L	6.5 μg/L	 	
Decachlorobiphenyl	E660F/WT	0.10	%	138 SUF	ND		 	
Tetrachloro-m-xylene	E660F/WT	0.10	%	75.2			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 23 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 24 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			Client sample ID	23-5						
Sub-Matrix: Groundwater		S	ampling date/time	14-Dec-2023	-					
(Matrix: Water)			ampining data time	12:00						
Analyte	Method/Lab	LOR	Unit	WT2340901-007	ON153/04	ON153/04				
					T3-NPGW-C-AI	T3-NPGW-F-AII				
					I					
Dissolved Metals										
Antimony, dissolved	E421/WT	0.10	μg/L	<0.10	20000 μg/L	20000 μg/L				
Arsenic, dissolved	E421/WT	0.10	μg/L	0.63	1900 μg/L	1900 μg/L				
Barium, dissolved	E421/WT	0.10	μg/L	293	29000 μg/L	29000 μg/L				
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.020	67 μg/L	67 μg/L				
Boron, dissolved	E421/WT	10	μg/L	71	45000 μg/L	45000 μg/L				
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.0069	2.7 μg/L	2.7 μg/L				
Chromium, dissolved	E421/WT	0.50	μg/L	<0.50	810 μg/L	810 μg/L				
Cobalt, dissolved	E421/WT	0.10	μg/L	1.30	66 μg/L	66 µg/L				
Copper, dissolved	E421/WT	0.20	μg/L	0.39	87 μg/L	87 μg/L				
Lead, dissolved	E421/WT	0.050	μg/L	<0.050	25 μg/L	25 μg/L				
Molybdenum, dissolved	E421/WT	0.050	μg/L	0.373	9200 μg/L	9200 μg/L				
Nickel, dissolved	E421/WT	0.50	μg/L	1.14	490 μg/L	490 μg/L				
Selenium, dissolved	E421/WT	0.050	μg/L	0.055	63 μg/L	63 µg/L				
Silver, dissolved	E421/WT	0.010	μg/L	<0.010	1.5 µg/L	1.5 µg/L				
Sodium, dissolved	E421/WT	50	μg/L	26000	2300000 µg/L	2300000 µg/L				
Thallium, dissolved	E421/WT	0.010	μg/L	<0.010	510 μg/L	510 μg/L				
Uranium, dissolved	E421/WT	0.010	μg/L	0.471	420 μg/L	420 μg/L				
Vanadium, dissolved	E421/WT	0.50	μg/L	0.60	250 μg/L	250 μg/L				
Zinc, dissolved	E421/WT	1.0	μg/L	2.7	1100 μg/L	1100 µg/L				
Dissolved metals filtration	EP421/WT		-	Field						
location										
Volatile Organic Compour	nds									
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 µg/L				
Benzene	E611D/WT	0.50	μg/L	<0.50	44 μg/L	430 μg/L				
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L				
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 µg/L	770 μg/L				
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 μg/L	56 μg/L				
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 μg/L	8.4 µg/L				
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L				
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 μg/L	22 μg/L				
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 μg/L	82000 μg/L				
L	1	1	1.5	I			<u> </u>	l .	<u> </u>	

Page : 25 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Analyte	Method/Lab	LOR	Unit	WT2340901-007	ON153/04	ON153/04	 	
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII		
Volatile Organic Compound	s - Continued							
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 µg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 µg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 μg/L	67 μg/L	 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 µg/L	3100 µg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene,	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
cis+trans-1,3-								
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 μg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 μg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 µg/L	15 μg/L	 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 µg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 µg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 µg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	

Page : 26 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-007 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	-	 	-
Hydrocarbons									
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L		 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L		 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L		 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L		 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L		 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370				 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES				 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	86.2				 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	77.4				 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	102				 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.3				 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 27 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			a		_				
			Client sample ID	23-5D	4				
Sub-Matrix: Groundwater		Sa	ampling date/time	14-Dec-2023					
(Matrix: Water)	Mathad/Lch	LOR	Unit	12:00 WT2340901-008	01145040	0111-0101		1	
Analyte	Method/Lab	LOR	Unit	W12340901-008	ON153/04	ON153/04	-	 	
					T3-NPGW-C-AI	T3-NPGW-F-AII			
Dissolved Metals									
Antimony, dissolved	E421/WT	0.10	μg/L	<0.10	20000 μg/L	20000 μg/L		 	
Arsenic, dissolved	E421/WT	0.10	μg/L	0.67	1900 µg/L	1900 μg/L		 	
Barium, dissolved	E421/WT	0.10	μg/L	295	29000 μg/L	29000 μg/L		 	
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.020	67 μg/L	67 μg/L		 	
Boron, dissolved	E421/WT	10	μg/L	76	45000 μg/L	45000 μg/L		 	
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.0073	2.7 μg/L	2.7 µg/L		 	
Chromium, dissolved	E421/WT	0.50	μg/L	<0.50	810 µg/L	810 μg/L		 	
Cobalt, dissolved	E421/WT	0.10	μg/L	1.35	66 µg/L	66 µg/L		 	
Copper, dissolved	E421/WT	0.20	μg/L	0.40	87 μg/L	87 μg/L		 	
Lead, dissolved	E421/WT	0.050	μg/L	<0.050	25 μg/L	25 μg/L		 	
Molybdenum, dissolved	E421/WT	0.050	μg/L	0.362	9200 μg/L	9200 μg/L		 	
Nickel, dissolved	E421/WT	0.50	μg/L	1.45	490 μg/L	490 μg/L		 	
Selenium, dissolved	E421/WT	0.050	μg/L	0.054	63 µg/L	63 µg/L		 	
Silver, dissolved	E421/WT	0.010	μg/L	<0.010	1.5 µg/L	1.5 µg/L		 	
Sodium, dissolved	E421/WT	50	μg/L	25900	2300000 μg/L	2300000 μg/L		 	
Thallium, dissolved	E421/WT	0.010	μg/L	<0.010	510 μg/L	510 μg/L		 	
Uranium, dissolved	E421/WT	0.010	μg/L	0.477	420 μg/L	420 μg/L		 	
Vanadium, dissolved	E421/WT	0.50	μg/L	0.60	250 μg/L	250 μg/L		 	
Zinc, dissolved	E421/WT	1.0	μg/L	2.8	1100 μg/L	1100 μg/L		 	
Dissolved metals filtration	EP421/WT		-	Field				 	
location									
Volatile Organic Compou									
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 µg/L		 	
Benzene	E611D/WT	0.50	μg/L	<0.50	44 μg/L	430 µg/L		 	
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L		 	
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 µg/L	770 μg/L		 	
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 μg/L	56 μg/L		 	
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 μg/L	8.4 μg/L		 	
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L		 	
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 μg/L	22 μg/L		 	
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 μg/L	82000 µg/L		 	

Page : 28 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

		I		WT2340901-008	ON153/04	ON153/04		
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII		
Volatile Organic Compounds	- Continued							
	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 μg/L	67 μg/L	 	
Dichlorodifluoromethane E	E611D/WT	0.50	μg/L	<0.50	4400 μg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 µg/L	3100 µg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloromethane [E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene,	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
cis+trans-1,3-								
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene E	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 µg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 μg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 	
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 µg/L	15 μg/L	 	
Tetrachloroethylene [E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 µg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 	
Trichlorofluoromethane [E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	

Page : 29 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-008 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Hydrocarbons								
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L	 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L	 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370			 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	96.8			 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	73.0			 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	102			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.4			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 30 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analytical Results

Analytical Results			Client sample ID	23-6		1				
Sub-Matrix: Groundwater		Si	ampling date/time	14-Dec-2023						
(Matrix: Water)			ampung data ama	12:00						
Analyte	Method/Lab	LOR	Unit	WT2340901-009		ON153/04	ON153/04	 		
						T3-NPGW-C-AI	T3-NPGW-F-AII			
						I				
Dissolved Metals										
Antimony, dissolved	E421/WT	0.10	μg/L	<1.00	DLHC	20000 μg/L	20000 μg/L	 		
Arsenic, dissolved	E421/WT	0.10	μg/L	<1.00	DLHC	1900 µg/L	1900 μg/L	 		
Barium, dissolved	E421/WT	0.10	μg/L	228	DLHC	29000 µg/L	29000 μg/L	 		
Beryllium, dissolved	E421/WT	0.020	μg/L	<0.200	DLHC	67 μg/L	67 μg/L	 		
Boron, dissolved	E421/WT	10	μg/L	233	DLHC	45000 μg/L	45000 μg/L	 		
Cadmium, dissolved	E421/WT	0.0050	μg/L	0.189	DLHC	2.7 μg/L	2.7 μg/L	 		
Chromium, dissolved	E421/WT	0.50	μg/L	<5.00	DLHC	810 μg/L	810 μg/L	 		
Cobalt, dissolved	E421/WT	0.10	μg/L	21.6	DLHC	66 μg/L	66 μg/L	 		
Copper, dissolved	E421/WT	0.20	μg/L	2.50	DLHC	87 μg/L	87 μg/L	 		
Lead, dissolved	E421/WT	0.050	μg/L	<0.500	DLHC	25 μg/L	25 μg/L	 		
Molybdenum, dissolved	E421/WT	0.050	μg/L	4.51	DLHC	9200 μg/L	9200 μg/L	 		
Nickel, dissolved	E421/WT	0.50	μg/L	36.4	DLHC	490 μg/L	490 μg/L	 		
Selenium, dissolved	E421/WT	0.050	μg/L	0.937	DLHC	63 µg/L	63 μg/L	 		
Silver, dissolved	E421/WT	0.010	μg/L	<0.100	DLHC	1.5 μg/L	1.5 μg/L	 		
Sodium, dissolved	E421/WT	50	μg/L	344000	DLHC	2300000 µg/L	2300000 μg/L	 		
Thallium, dissolved	E421/WT	0.010	μg/L	0.152	DLHC	510 μg/L	510 μg/L	 		
Uranium, dissolved	E421/WT	0.010	μg/L	13.8	DLHC	420 μg/L	420 μg/L	 		
Vanadium, dissolved	E421/WT	0.50	μg/L	<5.00	DLHC	250 μg/L	250 μg/L	 		
Zinc, dissolved	E421/WT	1.0	μg/L	15.4	DLHC	1100 μg/L	1100 μg/L	 		
Dissolved metals filtration	EP421/WT		-	Field				 		
location										
Volatile Organic Compour	nds									
Acetone	E611D/WT	20	μg/L	<20		130000 µg/L	130000 μg/L	 		
Benzene	E611D/WT	0.50	μg/L	<0.50		44 μg/L	430 μg/L	 		
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50		85000 μg/L	85000 μg/L	 		
Bromoform	E611D/WT	0.50	μg/L	<0.50		380 μg/L	770 μg/L	 		
Bromomethane	E611D/WT	0.50	μg/L	<0.50		5.6 μg/L	56 μg/L	 		
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20		0.79 μg/L	8.4 µg/L	 		
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50		630 µg/L	630 µg/L	 		
Chloroform	E611D/WT	0.50	μg/L	<0.50		2.4 µg/L	22 μg/L	 		
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50		82000 µg/L	82000 µg/L	 		
L	1		1.0	<u> </u>			. 5	<u> </u>	<u> </u>	

Page : 31 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

						ı		1	
Analyte	Method/Lab	LOR	Unit	WT2340901-009	ON153/04	ON153/04	 		
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII			
Volatile Organic Compound	S - Continued								
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 		
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 		
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 µg/L	9600 μg/L	 		
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 μg/L	67 μg/L	 		
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 µg/L	4400 μg/L	 		
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 μg/L	3100 μg/L	 		
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	12 μg/L	 		
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 		
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 		
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 		
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 µg/L	5500 μg/L	 		
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 µg/L	140 μg/L	 		
Dichloropropylene,	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 		
cis+trans-1,3-									
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 		
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 		
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 μg/L	2300 μg/L	 		
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 		
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 µg/L	 		
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 µg/L	580000 μg/L	 		
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 μg/L	1400 μg/L	 		
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 µg/L	9100 μg/L	 		
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 		
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 μg/L	15 μg/L	 		
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 		
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 		
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 μg/L	6700 μg/L	 		
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 		
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 μg/L	17 μg/L	 		
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 		
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 		
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 		
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 		
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 		
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 		

Page : 32 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Analyte	Method/Lab	LOR	Unit	WT2340901-009 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII		 	
Hydrocarbons									
F1 (C6-C10)	E581.F1-L/WT	25	μg/L	<25	750 μg/L	750 μg/L		 	
F2 (C10-C16)	E601.SG/WT	100	μg/L	<100	150 μg/L	150 μg/L		 	
F2-Naphthalene	EC600SG/WT	100	μg/L	<100				 	
F3 (C16-C34)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L		 	
F3-PAH	EC600SG/WT	250	μg/L	<250				 	
F4 (C34-C50)	E601.SG/WT	250	μg/L	<250	500 μg/L	500 μg/L		 	
F1-BTEX	EC580/WT	25	μg/L	<25	750 μg/L	750 μg/L		 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	240	μg/L	<370				 	
Chromatogram to baseline at nC50	E601.SG/WT		-	YES			-	 	
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	E601.SG/WT	1.0	%	88.1				 	
Dichlorotoluene, 3,4-	E581.F1-L/WT	1.0	%	79.9				 	
Bromofluorobenzene, 4-	E611D/WT	1.0	%	103				 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.0				 	
Polycyclic Aromatic Hydro	carbons								
Acenaphthene	E641A/WT	0.010	μg/L	<0.010	600 μg/L	1700 μg/L		 	
Acenaphthylene	E641A/WT	0.010	μg/L	<0.010	1.8 µg/L	1.8 µg/L		 	
Anthracene	E641A/WT	0.010	μg/L	<0.010	2.4 μg/L	2.4 μg/L		 	
Benz(a)anthracene	E641A/WT	0.010	μg/L	<0.010	4.7 μg/L	4.7 μg/L		 	
Benzo(a)pyrene	E641A/WT	0.0050	μg/L	<0.0050	0.81 μg/L	0.81 μg/L		 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.75 μg/L	0.75 μg/L		 	
Benzo(g,h,i)perylene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L		 	
Benzo(k)fluoranthene	E641A/WT	0.010	μg/L	<0.010	0.4 μg/L	0.4 μg/L		 	
Chrysene	E641A/WT	0.010	μg/L	<0.010	1 μg/L	1 μg/L		 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	μg/L	<0.0050	0.52 μg/L	0.52 μg/L		 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.010	130 µg/L	130 μg/L		 	
Fluorene	E641A/WT	0.010	μg/L	<0.010	400 μg/L	400 μg/L		 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010	0.2 μg/L	0.2 μg/L		 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	1800 μg/L	1800 μg/L		 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L		 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	<0.010	1800 μg/L	1800 μg/L		 	
Naphthalene	E641A/WT	0.050	μg/L	<0.050	1400 μg/L	6400 µg/L		 	
Phenanthrene	E641A/WT	0.020	μg/L	<0.020	580 μg/L	580 μg/L		 	
Pyrene	E641A/WT	0.010	μg/L	<0.010	68 μg/L	68 μg/L		 	
Chrysene-d12	E641A/WT	0.1	%	113				 	

Page : 33 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analyte	Method/Lab	LOR	Unit	WT2340901-009 (Continued)	ON153/04 T3-NPGW-C-AI I	ON153/04 T3-NPGW-F-AII	 	
Polycyclic Aromatic Hydroca	arbons Surrogate	s - Continued						
Naphthalene-d8	E641A/WT	0.1	%	99.9			 	
Phenanthrene-d10	E641A/WT	0.1	%	118			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Page : 34 of 35 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

Analytical Results

			Client sample ID	TRIP BLANK	7			
Sub-Matrix: Groundwater (Matrix: Water)		Sa	ampling date/time	14-Dec-2023 12:00	1			
Analyte	Method/Lab	LOR	Unit	WT2340901-010	ON153/04 T3-NPGW-C-AI	ON153/04 T3-NPGW-F-AII	 	
Volatile Organic Compound	ds							
Acetone	E611D/WT	20	μg/L	<20	130000 µg/L	130000 μg/L	 	
Benzene	E611D/WT	0.50	μg/L	<0.50	44 µg/L	430 μg/L	 	
Bromodichloromethane	E611D/WT	0.50	μg/L	<0.50	85000 μg/L	85000 μg/L	 	
Bromoform	E611D/WT	0.50	μg/L	<0.50	380 μg/L	770 μg/L	 	
Bromomethane	E611D/WT	0.50	μg/L	<0.50	5.6 µg/L	56 μg/L	 	
Carbon tetrachloride	E611D/WT	0.20	μg/L	<0.20	0.79 µg/L	8.4 µg/L	 	
Chlorobenzene	E611D/WT	0.50	μg/L	<0.50	630 µg/L	630 µg/L	 	
Chloroform	E611D/WT	0.50	μg/L	<0.50	2.4 μg/L	22 μg/L	 	
Dibromochloromethane	E611D/WT	0.50	μg/L	<0.50	82000 μg/L	82000 µg/L	 	
Dibromoethane, 1,2-	E611D/WT	0.20	μg/L	<0.20	0.25 μg/L	0.83 μg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	μg/L	<0.50	4600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,3-	E611D/WT	0.50	μg/L	<0.50	9600 μg/L	9600 μg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	μg/L	<0.50	8 μg/L	67 μg/L	 	
Dichlorodifluoromethane	E611D/WT	0.50	μg/L	<0.50	4400 µg/L	4400 μg/L	 	
Dichloroethane, 1,1-	E611D/WT	0.50	μg/L	<0.50	320 µg/L	3100 μg/L	 	
Dichloroethane, 1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	12 μg/L	 	
Dichloroethylene, 1,1-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloroethylene, trans-1,2-	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Dichloromethane	E611D/WT	1.0	μg/L	<1.0	610 μg/L	5500 μg/L	 	
Dichloropropane, 1,2-	E611D/WT	0.50	μg/L	<0.50	16 μg/L	140 μg/L	 	
Dichloropropylene, cis+trans-1,3-	E611D/WT	0.50	μg/L	<0.50	5.2 μg/L	45 μg/L	 	
Dichloropropylene, cis-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	μg/L	<0.30			 	
Ethylbenzene	E611D/WT	0.50	μg/L	<0.50	2300 µg/L	2300 μg/L	 	
Hexane, n-	E611D/WT	0.50	μg/L	<0.50	51 μg/L	520 μg/L	 	
Methyl ethyl ketone [MEK]	E611D/WT	20	μg/L	<20	470000 μg/L	1500000 μg/L	 	
Methyl isobutyl ketone [MIBK]	E611D/WT	20	μg/L	<20	140000 μg/L	580000 μg/L	 	
Methyl-tert-butyl ether [MTBE]	E611D/WT	0.50	μg/L	<0.50	190 μg/L	1400 μg/L	 	
Styrene	E611D/WT	0.50	μg/L	<0.50	1300 μg/L	9100 μg/L	 	

Page : 35 of 35 Work Order : WT2340901

Project : 1904320

Amelida	N 4 - 41 1 /1 1	4.00	11-9					
Analyte	Method/Lab	LOR	Unit	WT2340901-010	ON153/04	ON153/04	 	
				(Continued)	T3-NPGW-C-AI	T3-NPGW-F-AII		
					I			
Volatile Organic Compoun	ds - Continued							
Tetrachloroethane, 1,1,1,2-	E611D/WT	0.50	μg/L	<0.50	3.3 µg/L	28 μg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	μg/L	<0.50	3.2 μg/L	15 μg/L	 	
Tetrachloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Toluene	E611D/WT	0.50	μg/L	<0.50	18000 μg/L	18000 μg/L	 	
Trichloroethane, 1,1,1-	E611D/WT	0.50	μg/L	<0.50	640 μg/L	6700 μg/L	 	
Trichloroethane, 1,1,2-	E611D/WT	0.50	μg/L	<0.50	4.7 μg/L	30 μg/L	 	
Trichloroethylene	E611D/WT	0.50	μg/L	<0.50	1.6 µg/L	17 μg/L	 	
Trichlorofluoromethane	E611D/WT	0.50	μg/L	<0.50	2500 μg/L	2500 μg/L	 	
Vinyl chloride	E611D/WT	0.50	μg/L	<0.50	0.5 μg/L	1.7 μg/L	 	
Xylene, m+p-	E611D/WT	0.40	μg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	μg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	μg/L	<0.50	4200 μg/L	4200 μg/L	 	
BTEX, total	E611D/WT	1.0	μg/L	<1.0			 	
Volatile Organic Compoun	ds Surrogates							
Bromofluorobenzene, 4-	E611D/WT	1.0	%	102			 	
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.0			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

ON153/04 Ontario Regulation 153/04 - April 15, 2011 Standards (JUL, 2011)

T3-NPGW-C-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)
T3-NPGW-F-All 153 T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

QUALITY CONTROL INTERPRETIVE REPORT

:WT2340901 **Work Order** Page : 1 of 11

Client Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

Contact : Sylvia Babiarz **Account Manager** : Andrew Martin

Address Address : 74 Berkeley Street : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone : +1 519 886 6910 Project : 1904320 **Date Samples Received** : 15-Dec-2023 11:00

Issue Date : 22-Dec-2023 15:10

PO C-O-C number ٠ ____ Sampler :SB

: Ajax, ON Quote number :WT23-PALM100-8 - Ajax GW & Soil

Toronto ON Canada M5V 1E3

No. of samples received :10 No. of samples analysed :10

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 3 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group		Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS)	Recoveries								
Dissolved Metals	;	Anonymous	Anonymous	Silver, dissolved	7440-22-4	E421	69.8 % MES	70.0-130%	Recovery less than lower
									data quality objective

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Regular Sample Surrogates

Sub-Matrix: Groundwater

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Organochlorine Pesticides Surrogates	WT2340901-006	23-4D	Decachlorobiphenyl	2051-24-3	138 %	50.0-130	Recovery greater than upper
						%	data quality objective

Page : 4 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Tin
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-1	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-2	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-3	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-4	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-5	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-5D	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
23-6	E421	14-Dec-2023	18-Dec-2023	180	4 days	✓	18-Dec-2023	180	4 days	✓
				days	,-			days	,-	

Page : 5 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]

Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]

Project : 1904320

Matrix: Water

23-2

23-3

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Extraction / Preparation Analyte Group: Analytical Method Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Hydrocarbons: CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) E581.F1-L 14-Dec-2023 1 23-1 18-Dec-2023 4 days 18-Dec-2023 14 days 4 days 14 days Hydrocarbons: CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) 23-2 E581.F1-L 14-Dec-2023 18-Dec-2023 4 days 1 18-Dec-2023 14 days 4 days ✓ 14 days Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) 23-3 E581.F1-L 14-Dec-2023 18-Dec-2023 4 days 1 18-Dec-2023 14 days 4 days 14 davs Hydrocarbons: CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) E581.F1-L 23-4 14-Dec-2023 18-Dec-2023 4 days ✓ 18-Dec-2023 14 days 4 days 1 14 days Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) E581.F1-L 14-Dec-2023 18-Dec-2023 1 18-Dec-2023 ✓ 23-5 4 days 14 14 days 4 days days Hydrocarbons: CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) E581.F1-L 14-Dec-2023 1 14 days 23-5D 18-Dec-2023 14 4 days 18-Dec-2023 4 days 1 days Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level) Glass vial (sodium bisulfate) 23-6 E581.F1-L 14-Dec-2023 18-Dec-2023 18-Dec-2023 ✓ 4 days 14 days 4 days 14 days Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID

14-Dec-2023

14-Dec-2023

19-Dec-2023

19-Dec-2023

40

days

40 days 5 days

5 days

1

1

21-Dec-2023

21-Dec-2023

E601.SG

E601.SG

1

✓

40 days 2 days

40 days 2 days

Page : 6 of 11 Work Order · WT2340901

Client : Palmer Environmental Consulting Group Inc.

Organochlorine Pesticides: OCP Analysis by GC-MS-MS or GC-MS

Amber glass/Teflon lined cap [ON MECP]

Project : 1904320

Matrix: Water

23-2

23-3

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Extraction / Preparation Analyte Group: Analytical Method Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] E601.SG 14-Dec-2023 21-Dec-2023 1 23-4 19-Dec-2023 5 days 40 days 2 days 40 days Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-5 E601.SG 14-Dec-2023 19-Dec-2023 5 days 1 21-Dec-2023 40 days 2 days ✓ 40 days Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-5D E601.SG 14-Dec-2023 19-Dec-2023 5 days 1 21-Dec-2023 40 days 2 days 40 davs Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-6 E601.SG 14-Dec-2023 19-Dec-2023 5 days ✓ 21-Dec-2023 40 days 2 days 1 40 days Hydrocarbons: Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] E601.SG 14-Dec-2023 19-Dec-2023 1 22-Dec-2023 ✓ 5 days 40 days 3 days 40 days Organochlorine Pesticides: OCP Analysis by GC-MS-MS or GC-MS Amber glass/Teflon lined cap [ON MECP] E660F 14-Dec-2023 1 23-4 19-Dec-2023 14 5 days 20-Dec-2023 40 days 1 days 1 days Organochlorine Pesticides: OCP Analysis by GC-MS-MS or GC-MS Amber glass/Teflon lined cap [ON MECP] 23-4D E660F 14-Dec-2023 19-Dec-2023 20-Dec-2023 5 days 40 days 1 days 14 days Organochlorine Pesticides : OCP Analysis by GC-MS-MS or GC-MS Amber glass/Teflon lined cap [ON MECP]

14-Dec-2023

14-Dec-2023

19-Dec-2023

19-Dec-2023

5 days

5 days

14 days

14 days 1

1

20-Dec-2023

20-Dec-2023

E660F

E660F

✓

1

40 days 2 days

40 days 2 days

Page : 7 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group: Analytical Method Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Polycyclic Aromatic Hydrocarbons: PAHs by Hexane LVI GC-MS Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] E641A 14-Dec-2023 1 23-2 19-Dec-2023 5 days 20-Dec-2023 40 days 0 days 14 days Polycyclic Aromatic Hydrocarbons: PAHs by Hexane LVI GC-MS Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-3 E641A 14-Dec-2023 19-Dec-2023 5 days 1 20-Dec-2023 40 days 0 days ✓ 14 days Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-3D E641A 14-Dec-2023 19-Dec-2023 5 days 1 20-Dec-2023 40 days 0 days 14 davs Polycyclic Aromatic Hydrocarbons: PAHs by Hexane LVI GC-MS Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] 23-4 E641A 14-Dec-2023 19-Dec-2023 5 days ✓ 20-Dec-2023 40 days 0 days 1 14 days Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] E641A 14-Dec-2023 19-Dec-2023 1 20-Dec-2023 ✓ 23-6 5 days 40 days 0 days 14 days Volatile Organic Compounds: VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate) E611D 14-Dec-2023 1 23-1 18-Dec-2023 14 4 days 18-Dec-2023 14 days 4 days 1 days Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate) 23-2 E611D 14-Dec-2023 18-Dec-2023 18-Dec-2023 4 days 14 days 4 days 14 days Volatile Organic Compounds: VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate) 23-3 E611D 14-Dec-2023 18-Dec-2023 4 days 1 18-Dec-2023 14 days 4 days ✓ 14 days Volatile Organic Compounds: VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate) E611D 14-Dec-2023 18-Dec-2023 1 18-Dec-2023 1 23-4 4 days 14 days 4 days 14 days

Page : 8 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E611D	14-Dec-2023	18-Dec-2023	14	4 days	✓	18-Dec-2023	14 days	4 days	✓
			days						
						•			
E611D	14-Dec-2023	18-Dec-2023	14	4 days	✓	18-Dec-2023	14 days	4 days	✓
			days						
E611D	14-Dec-2023	18-Dec-2023	14	4 days	✓	18-Dec-2023	14 days	4 days	✓
			days						
E611D	14-Dec-2023	18-Dec-2023	14	4 days	✓	18-Dec-2023	14 days	4 days	✓
			days						
	E611D E611D	E611D 14-Dec-2023 E611D 14-Dec-2023 E611D 14-Dec-2023	Preparation Date E611D 14-Dec-2023 18-Dec-2023 E611D 14-Dec-2023 18-Dec-2023 E611D 14-Dec-2023 18-Dec-2023	Preparation Date Holding Rec E611D 14-Dec-2023 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days	Preparation Date Holding Times Rec Actual E611D 14-Dec-2023 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days	Preparation Date Holding Times Rec Eval E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓ E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓ E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓ E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓	Preparation Date Holding Times Rec Eval Analysis Date E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023	Preparation Date Holding Times Rec Eval Analysis Date Holding Rec E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓ 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days	Preparation Date Holding Times Rec Eval Analysis Date Holding Times Rec Actual E611D 14-Dec-2023 18-Dec-2023 14 days 4 days ✓ 18-Dec-2023 14 days 4 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days 4 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days 4 days E611D 14-Dec-2023 18-Dec-2023 14 days ✓ 18-Dec-2023 14 days 4 days

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 9 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1280681	0	8	0.0	5.0	x
Dissolved Metals in Water by CRC ICPMS	E421	1280870	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1280680	1	18	5.5	5.0	✓
Laboratory Control Samples (LCS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1280681	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1280870	1	20	5.0	5.0	✓
OCP Analysis by GC-MS-MS or GC-MS	E660F	1282559	2	20	10.0	5.0	✓
PAHs by Hexane LVI GC-MS	E641A	1283245	1	11	9.0	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1283246	2	26	7.6	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1280680	1	18	5.5	5.0	✓
Method Blanks (MB)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1280681	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1280870	1	20	5.0	5.0	√
OCP Analysis by GC-MS-MS or GC-MS	E660F	1282559	2	20	10.0	5.0	✓
PAHs by Hexane LVI GC-MS	E641A	1283245	1	11	9.0	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1283246	2	26	7.6	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1280680	1	18	5.5	5.0	✓
Matrix Spikes (MS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1280681	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1280870	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1280680	1	18	5.5	5.0	√

Page : 10 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 ALS Environmental -	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1 (mod)	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law. Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1 (mod)	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4). Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D ALS Environmental - Waterloo	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS	E641A ALS Environmental - Waterloo	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
OCP Analysis by GC-MS-MS or GC-MS	E660F ALS Environmental - Waterloo	Water	EPA 8270E (mod)	Pesticides are analyzed by GC-MS-MS or GC-MS
F1-BTEX	EC580 ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
SUM F1 to F4 where F2-F4 is SG treated	EC581SG ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg is not used within this calculation due to overlap with other fractions.

Page : 11 of 11 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F2-F4 (sg) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier	F2-F4 (sg) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME
			1	Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50),
	ALS Environmental -			minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Waterloo			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Waterloo			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Waterloo			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
Pesticides, PCB, and Neutral Extractable	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	ALS Environmental -			
	Waterloo			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page : 1 of 15 :WT2340901

Client : Palmer Environmental Consulting Group Inc. Laboratory : ALS Environmental - Waterloo

: Sylvia Babiarz **Account Manager** : Andrew Martin Contact Address

Address :74 Berkeley Street :60 Northland Road, Unit 1 Toronto ON Canada M5V 1E3

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone :+1 519 886 6910

> Date Samples Received :15-Dec-2023 11:00

Date Analysis Commenced :18-Dec-2023 Issue Date

C-O-C number :22-Dec-2023 15:10 Sampler :SB

Site : Ajax, ON

Quote number : WT23-PALM100-8 - Ajax GW & Soil

: 1904320

No. of samples received : 10 No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Project

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Waterloo VOC, Waterloo, Ontario
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario

Page: 2 of 15

Work Order: WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Dissolved Metals (QC Lot: 1280870)												
WT2340821-002	Anonymous	Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.15 μg/L	0.00015	0.000002	Diff <2x LOR			
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.34 µg/L	0.00035	0.00001	Diff <2x LOR			
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	128 µg/L	0.131	1.78%	20%			
		Beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	123 µg/L	0.118	4.24%	20%			
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0060 µg/L	0.0000078	0.0000018	Diff <2x LOR			
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.50 µg/L	<0.00050	0	Diff <2x LOR			
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.10 μg/L	0.00010	0.0000003	Diff <2x LOR			
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	5.00 µg/L	0.00499	0.218%	20%			
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.064 µg/L	0.000065	0.0000003	Diff <2x LOR			
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	3.24 µg/L	0.00325	0.447%	20%			
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	1.60 µg/L	0.00165	0.00005	Diff <2x LOR			
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.298 μg/L	0.000322	0.000024	Diff <2x LOR			
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.010 µg/L	<0.000010	0	Diff <2x LOR			
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	55500 μg/L	54.9	1.03%	20%			
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.011 μg/L	0.000011	0.0000001	Diff <2x LOR			
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	3.88 µg/L	0.00386	0.294%	20%			
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.50 µg/L	<0.00050	0	Diff <2x LOR			
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	2.2 µg/L	0.0021	0.00002	Diff <2x LOR			
olatile Organic Co	mpounds (QC Lot: 1280	680)											
VT2340901-001	23-1	Acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR			
		Benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Bromodichloromethane	75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Bromoform	75-25-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Bromomethane	74-83-9	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR			
		Chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		Dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR			

Page : 4 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Volatile Organic Co	mpounds (QC Lot: 12	280680) - continued									
WT2340901-001	23-1	Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	

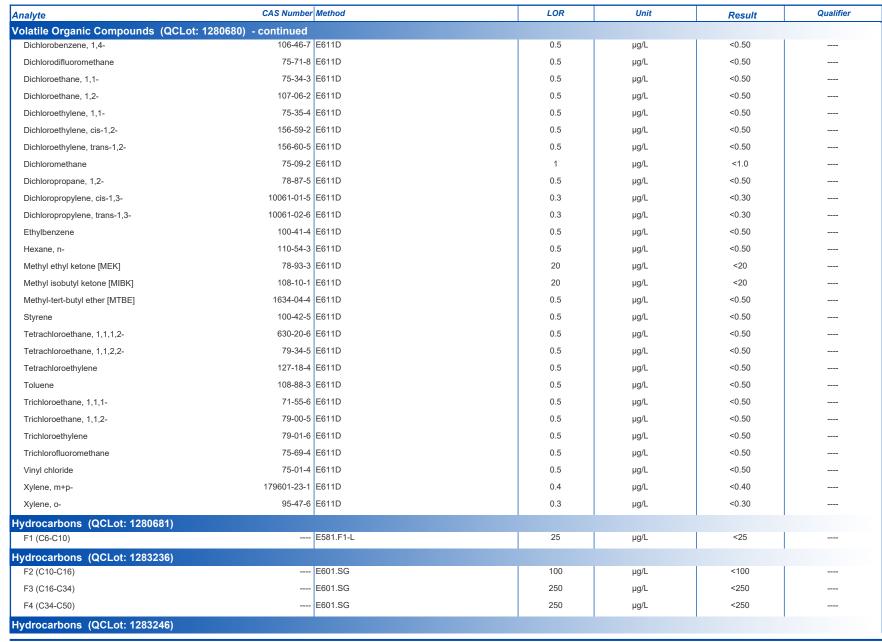
Page : 5 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

ALS

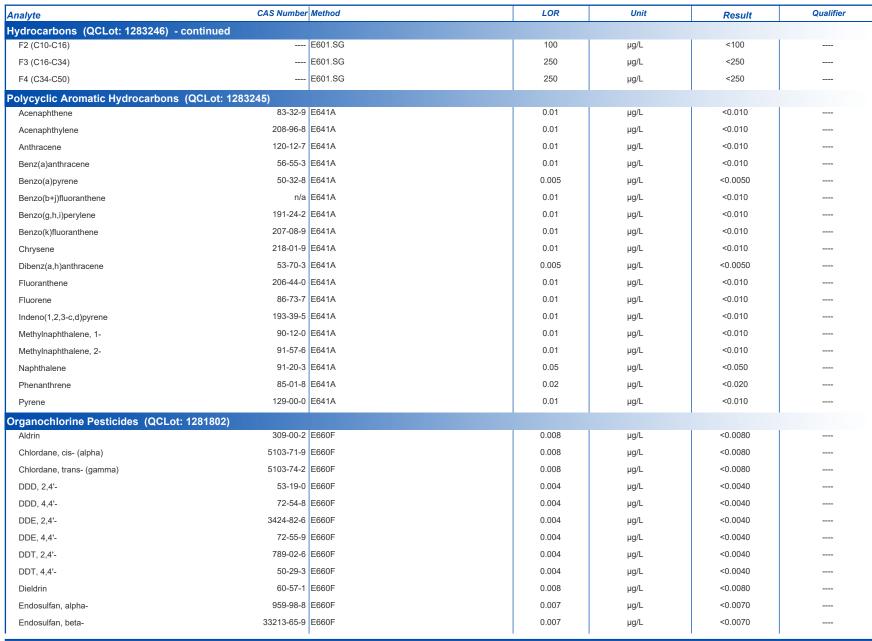
Method Blank (MB) Report


A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
issolved Metals (QCLot: 1280870)						
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
Boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
olatile Organic Compounds (QCL	ot: 1280680)					
Acetone	67-64-1	E611D	20	μg/L	<20	
Benzene	71-43-2	E611D	0.5	μg/L	<0.50	
Bromodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	μg/L	<0.50	
Bromomethane	74-83-9	E611D	0.5	μg/L	<0.50	
Carbon tetrachloride	56-23-5	E611D	0.2	μg/L	<0.20	
Chlorobenzene	108-90-7	E611D	0.5	μg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	μg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	μg/L	<0.50	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	μg/L	<0.20	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	<0.50	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	<0.50	

Page : 6 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.


Project : 1904320

Page : 7 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 8 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Page : 9 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 1280870)									
Antimony, dissolved	7440-36-0 I	E421	0.0001	mg/L	0.05 mg/L	101	80.0	120	
Arsenic, dissolved	7440-38-2 I	E421	0.0001	mg/L	0.05 mg/L	106	80.0	120	
Barium, dissolved	7440-39-3 I	E421	0.0001	mg/L	0.0125 mg/L	105	80.0	120	
Beryllium, dissolved	7440-41-7 I	E421	0.00002	mg/L	0.005 mg/L	100	80.0	120	
Boron, dissolved	7440-42-8 I	E421	0.01	mg/L	0.05 mg/L	96.4	80.0	120	
Cadmium, dissolved	7440-43-9 I	E421	0.000005	mg/L	0.005 mg/L	101	80.0	120	
Chromium, dissolved	7440-47-3 I	E421	0.0005	mg/L	0.0125 mg/L	104	80.0	120	
Cobalt, dissolved	7440-48-4 I	E421	0.0001	mg/L	0.0125 mg/L	104	80.0	120	
Copper, dissolved	7440-50-8 I	E421	0.0002	mg/L	0.0125 mg/L	104	80.0	120	
Lead, dissolved	7439-92-1 I	E421	0.00005	mg/L	0.025 mg/L	103	80.0	120	
Molybdenum, dissolved	7439-98-7 I	E421	0.00005	mg/L	0.0125 mg/L	103	80.0	120	
Nickel, dissolved	7440-02-0 I	E421	0.0005	mg/L	0.025 mg/L	104	80.0	120	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	102	80.0	120	
Silver, dissolved	7440-22-4 I	E421	0.00001	mg/L	0.005 mg/L	103	80.0	120	
Sodium, dissolved	7440-23-5 I	E421	0.05	mg/L	2.5 mg/L	109	80.0	120	
Thallium, dissolved	7440-28-0 I	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120	
Uranium, dissolved	7440-61-1 I	E421	0.00001	mg/L	0.00025 mg/L	102	80.0	120	
Vanadium, dissolved	7440-62-2 I	E421	0.0005	mg/L	0.025 mg/L	105	80.0	120	
Zinc, dissolved	7440-66-6 I	E421	0.001	mg/L	0.025 mg/L	107	80.0	120	
Volatile Organic Compounds (QCLot: 1	280680)								
Acetone	67-64-1 I	E611D	20	μg/L	100 μg/L	123	70.0	130	
Benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	92.6	70.0	130	
Bromodichloromethane	75-27-4	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
Bromoform	75-25-2 I	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
Bromomethane	74-83-9 I	E611D	0.5	μg/L	100 μg/L	99.4	60.0	140	
Carbon tetrachloride	56-23-5 I	E611D	0.2	μg/L	100 μg/L	99.6	70.0	130	
Chlorobenzene	108-90-7 I	E611D	0.5	μg/L	100 μg/L	90.5	70.0	130	
Chloroform	67-66-3 I	E611D	0.5	μg/L	100 μg/L	97.9	70.0	130	
Dibromochloromethane	124-48-1	E611D	0.5	μg/L	100 μg/L	108	70.0	130	
Dibromoethane, 1,2-	106-93-4 I	E611D	0.2	μg/L	100 μg/L	102	70.0	130	
Dichlorobenzene, 1,2-	95-50-1 I	E611D	0.5	μg/L	100 μg/L	92.9	70.0	130	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	100 μg/L	86.0	70.0	130	

Page : 10 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Combined Compounds (QCL of: 1280680) - continued Compounds (QCL of:	Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
Companies Compounds CCL ol.: 1280880 - continued Collidor Organic Compounds Collidor Organic Collidor Organic Collidor Collidor Organic Collidor Organic Collidor Collidor Organic Collidor Organic Collidor Collidor Collidor Organic Collidor Co						Spike	Recovery (%)	Recovery	Limits (%)	
Control of the Cont	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Control of the Cont	Volatile Organic Compounds (QCLot: 1	280680) - continued								
Continue	Dichlorobenzene, 1,4-		E611D	0.5	μg/L	100 μg/L	87.0	70.0	130	
chloroschame, 1.2- 107-862 E811D 0.5 µg/L 100 µg/L 1	Dichlorodifluoromethane	75-71-8	E611D	0.5	μg/L	100 μg/L	82.4	60.0	140	
chidoreshylene, f.1- 75.354 E811D 0.5 µg/L 100 µg/L 92.3 70.0 130 — chidoreshylene, cl-1-2 156-90.5 E811D 0.5 µg/L 100 µg/L 92.3 70.0 130 — chidoreshylene, cl-1-2 156-90.5 E811D 0.5 µg/L 100 µg/L 90.7 70.0 130 — chidoreshylene, f.2- chidoreshylene, f.2- chidorespepiene, f.2- chidorespe	Dichloroethane, 1,1-	75-34-3	E611D	0.5	μg/L	100 μg/L	99.8	70.0	130	
calcinocethylene, cis-1,2. 186-89-2 E611D 0.5 µg/L 100 µg/L 10	Dichloroethane, 1,2-	107-06-2	E611D	0.5	μg/L	100 μg/L	100.0	70.0	130	
Collection of the Principle Coll	Dichloroethylene, 1,1-	75-35-4	E611D	0.5	μg/L	100 μg/L	92.3	70.0	130	
chloromethane 75-00-2 E811D 1 µg/L 100 µg/L 104 70.0 130 —— chloromethane 75-00-2 78-87-5 E811D 0.5 µg/L 100 µg/L 92.9 70.0 130 —— chloropropylene, Iran-1.3- 10061-02-6 E811D 0.3 µg/L 100 µg/L 83.6 70.0 130 —— chloropropylene, Iran-1.3- 10061-02-6 E811D 0.3 µg/L 100 µg/L 80.9 70.0 130 —— chloropropylene, Iran-1.3- 10061-02-6 E811D 0.5 µg/L 100 µg/L 85.2 70.0 130 —— chloropropylene, Iran-1.3- 10061-02-6 E811D 0.5 µg/L 100 µg/L 100 µg/L 105 70.0 130 —— chloropropylene, Iran-1.3- 10061-02-6 E811D 0.5 µg/L 100 µg/L	Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	100 μg/L	94.5	70.0	130	
chloropropopene, 1,2- 78-87-5 6811 D 0.5 106 10-15 6611 D 0.3 106 10-15 6611 D 0.5 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 106 10-15 107 0 130 108 10-15 108 10-15 109 11 100 100 100 100 100 100 100 100 100	Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	μg/L	100 μg/L	90.7	70.0	130	
tentropropylene, cis-1,3- 10061-02-6 611D 0.3 pglL 100 pgL 83.6 70.0 130 chloropropylene, trans-1,3- 10061-02-6 611D 0.3 pglL 100 pgL 80.9 70.0 130 130 100-14-6 611D 0.5 pglL 100 pgL	Dichloromethane	75-09-2	E611D	1	μg/L	100 μg/L	104	70.0	130	
tehloropropyleme, trans.1,3- 10061-02-6	Dichloropropane, 1,2-	78-87-5	E611D	0.5	μg/L	100 μg/L	92.9	70.0	130	
hyberazene 100414 E611D	Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	μg/L	100 μg/L	83.6	70.0	130	
	Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	100 μg/L	80.9	70.0	130	
exame, n.	Ethylbenzene	100-41-4	E611D	0.5	μg/L	100 μg/L	85.2	70.0	130	
ethyl isobuly ketone [MIBK] 108-10-1 E611D 20	Hexane, n-	110-54-3	E611D	0.5	μg/L	100 μg/L	105	70.0	130	
tetry-kert-buyl ether [MTBE] 1634-04 6611D 0.5	Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 μg/L	109	70.0	130	
yerne 100-42-5	Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	100 μg/L	98.1	70.0	130	
Establioroethane, 1,1,1,2-	Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 μg/L	91.1	70.0	130	
etrachloroethane, 1,1,2,2- etrachloroethane, 1,1,2,2- etrachloroethylene 127-18-4 E611D 0.5 µg/L 100 µ	Styrene	100-42-5	E611D	0.5	μg/L	100 μg/L	90.9	70.0	130	
Set	Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
127-184 E611D 0.5 µg/L 100 µg/L 109 70.0 130	Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L		108	70.0	130	
108-88-3 E611D 0.5 µg/L 100 µg/L 101 70.0 130	Tetrachloroethylene	127-18-4	E611D	0.5	μg/L	100 μg/L	109	70.0	130	
Tichloroethane, 1, 1, 1-	Toluene	108-88-3	E611D	0.5	μg/L		101	70.0	130	
ichloroethane, 1,1,2-	Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	μg/L		90.5	70.0	130	
Top-Oi-6 February Top-Oi-6	Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	μg/L		101	70.0	130	
inchlorofluoromethane 75-69-4 E611D 0.5 μg/L 100 μg/L 94.2 60.0 140	Trichloroethylene	79-01-6	E611D	0.5			111	70.0	130	
inyl chloride 75-01-4 E611D 0.5 μg/L 100 μg/L 92.2 60.0 140	Trichlorofluoromethane	75-69-4	E611D	0.5	μg/L		94.2	60.0	140	
ylene, m+p- ylene, o- 179601-23-1 E611D 0.4 µg/L 200 µg/L 86.1 70.0 130 ylene, o- ydrocarbons (QCLot: 1280681) 1 (C6-C10) E581.F1-L 25 µg/L 2000 µg/L 100 µg/L 100 µg/L 108 80.0 120 ydrocarbons (QCLot: 1283236) 2 (C10-C16) E601.SG 100 µg/L 3685.12 µg/L 117 70.0 130 3 (C16-C34) 4 (C34-C50) E601.SG 250 µg/L 4274.88 µg/L 114 70.0 130 140.0 130	Vinyl chloride	75-01-4	E611D	0.5				60.0	140	
ydrocarbons (QCLot: 1280681) 1 (C6-C10)	Xylene, m+p-	179601-23-1	E611D	0.4				70.0	130	
ydrocarbons (QCLot: 1280681) 1 (C6-C10) E581.F1-L 25 μg/L 2000 μg/L 108 80.0 120 ydrocarbons (QCLot: 1283236) 2 (C10-C16) E601.SG 100 μg/L 3685.12 μg/L 117 70.0 130 3 (C16-C34) E601.SG 250 μg/L 7481.33 μg/L 115 70.0 130 4 (C34-C50) E601.SG 250 μg/L 4274.88 μg/L 114 70.0 130	Xylene, o-			0.3				70.0	130	
ydrocarbons (QCLot: 1283236) 2 (C10-C16) E601.SG 100 μg/L 3685.12 μg/L 117 70.0 130 3 (C16-C34) E601.SG 250 μg/L 7481.33 μg/L 115 70.0 130 4 (C34-C50) E601.SG 250 μg/L 4274.88 μg/L 114 70.0 130						10				
ydrocarbons (QCLot: 1283236) 2 (C10-C16) E601.SG 100 μg/L 3685.12 μg/L 117 70.0 130 3 (C16-C34) E601.SG 250 μg/L 7481.33 μg/L 115 70.0 130 4 (C34-C50) E601.SG 250 μg/L 4274.88 μg/L 114 70.0 130	Hydrocarbons (QCLot: 1280681)									
2 (C10-C16) E601.SG 100 µg/L 3685.12 µg/L 117 70.0 130 3 (C16-C34) E601.SG 250 µg/L 7481.33 µg/L 115 70.0 130 4 (C34-C50) E601.SG 250 µg/L 4274.88 µg/L 114 70.0 130	F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	108	80.0	120	
3 (C16-C34) E601.SG 250 μg/L 7481.33 μg/L 115 70.0 130 4 (C34-C50) μg/L 250 μg/L 4274.88 μg/L 114 70.0 130	Hydrocarbons (QCLot: 1283236)									
4 (C34-C50) E601.SG 250 µg/L 4274.88 µg/L 114 70.0 130	F2 (C10-C16)		E601.SG	100	μg/L	3685.12 μg/L	117	70.0	130	
	F3 (C16-C34)		E601.SG	250	μg/L	7481.33 μg/L	115	70.0	130	
ydrocarbons (QCLot: 1283246)	F4 (C34-C50)		E601.SG	250	μg/L	4274.88 μg/L	114	70.0	130	
	Hydrocarbons (QCLot: 1283246)									

Page : 11 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Hydrocarbons (QCLot: 1283246)	continued								
F2 (C10-C16)		E601.SG	100	μg/L	3685.12 μg/L	109	70.0	130	
F3 (C16-C34)		E601.SG	250	μg/L	7481.33 μg/L	112	70.0	130	
F4 (C34-C50)		E601.SG	250	μg/L	4274.88 μg/L	112	70.0	130	
Polycyclic Aromatic Hydrocarbons	(QCLot: 1283245)								
Acenaphthene	83-32-9	E641A	0.01	μg/L	0.5263 μg/L	105	50.0	140	
Acenaphthylene	208-96-8	E641A	0.01	μg/L	0.5263 μg/L	103	50.0	140	
Anthracene	120-12-7	E641A	0.01	μg/L	0.5263 μg/L	113	50.0	140	
Benz(a)anthracene	56-55-3	E641A	0.01	μg/L	0.5263 μg/L	120	50.0	140	
Benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	0.5263 μg/L	120	50.0	140	
Benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	0.5263 μg/L	96.8	50.0	140	
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	0.5263 μg/L	109	50.0	140	
Benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	0.5263 μg/L	106	50.0	140	
Chrysene	218-01-9	E641A	0.01	μg/L	0.5263 μg/L	116	50.0	140	
Dibenz(a,h)anthracene	53-70-3		0.005	μg/L	0.5263 µg/L	108	50.0	140	
Fluoranthene	206-44-0		0.01	μg/L	0.5263 μg/L	106	50.0	140	
Fluorene	86-73-7		0.01	µg/L	0.5263 μg/L	115	50.0	140	
ndeno(1,2,3-c,d)pyrene	193-39-5		0.01	µg/L	0.5263 μg/L	122	50.0	140	
Methylnaphthalene, 1-	90-12-0		0.01	μg/L	0.5263 μg/L	98.0	50.0	140	
Methylnaphthalene, 2-	91-57-6		0.01	μg/L		100	50.0	140	
Naphthalene	91-20-3		0.05	μg/L	0.5263 μg/L 0.5263 μg/L	96.7	50.0	140	
·	85-01-8		0.03				50.0	140	
Phenanthrene				μg/L	0.5263 μg/L	107			
Pyrene	129-00-0	E041A	0.01	μg/L	0.5263 μg/L	109	50.0	140	
	4004000)								
Organochlorine Pesticides (QCLot:	1281802) 309-00-2	E660E	0.008	μg/L	0.2 μg/L	71.9	50.0	150	
Chlordane, cis- (alpha)	5103-71-9		0.008	μg/L	0.2 μg/L	89.5	50.0	150	
Chlordane, trans- (gamma)	5103-71-9		0.008	μg/L		98.2	50.0	150	
,	53-19-0		0.008		0.2 μg/L		50.0	150	
DDD, 2,4'-	72-54-8		0.004	μg/L	0.2 μg/L	99.6	50.0	150	
DDD, 4,4'-				μg/L	0.2 μg/L	104			
DDE, 2,4'-	3424-82-6		0.004	μg/L	0.2 μg/L	88.7	50.0	150	
DDE, 4,4'-	72-55-9		0.004	μg/L	0.2 μg/L	90.4	50.0	150	
DDT, 2,4'-	789-02-6		0.004	μg/L	0.2 μg/L	93.5	50.0	150	
DDT, 4,4'-	50-29-3		0.004	μg/L	0.2 μg/L	84.5	50.0	150	
Dieldrin	60-57-1		0.008	μg/L	0.2 μg/L	88.8	50.0	150	
Endosulfan, alpha-	959-98-8	E660F	0.007	μg/L	0.2 μg/L	91.5	50.0	150	

Page : 12 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Organochlorine Pesticides (QCLot: 128	1802) - continued								
Endosulfan, beta-	33213-65-9	E660F	0.007	μg/L	0.2 μg/L	90.6	50.0	150	
Endrin	72-20-8	E660F	0.01	μg/L	0.2 μg/L	90.2	50.0	150	
Heptachlor	76-44-8	E660F	0.008	μg/L	0.2 μg/L	77.3	50.0	150	
Heptachlor epoxide	1024-57-3	E660F	0.008	μg/L	0.2 μg/L	91.6	50.0	150	
Hexachlorobenzene	118-74-1	E660F	0.008	μg/L	0.2 μg/L	83.6	50.0	150	
Hexachlorobutadiene	87-68-3	E660F	0.008	μg/L	0.2 μg/L	84.8	50.0	150	
Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.008	μg/L	0.2 μg/L	77.9	50.0	150	
Hexachloroethane	67-72-1	E660F	0.008	μg/L	0.2 μg/L	80.7	50.0	150	
Methoxychlor	72-43-5	E660F	0.008	μg/L	0.2 μg/L	89.1	50.0	150	
Organochlorine Pesticides (QCLot: 128	2559)								
Aldrin	309-00-2	E660F	0.008	μg/L	0.2 μg/L	102	50.0	150	
Chlordane, cis- (alpha)	5103-71-9	E660F	0.008	μg/L	0.2 μg/L	100	50.0	150	
Chlordane, trans- (gamma)	5103-74-2	E660F	0.008	μg/L	0.2 μg/L	90.7	50.0	150	
DDD, 2,4'-	53-19-0	E660F	0.004	μg/L	0.2 μg/L	112	50.0	150	
DDD, 4,4'-	72-54-8	E660F	0.004	μg/L	0.2 μg/L	103	50.0	150	
DDE, 2,4'-	3424-82-6	E660F	0.004	μg/L	0.2 μg/L	100	50.0	150	
DDE, 4,4'-	72-55-9	E660F	0.004	μg/L	0.2 μg/L	99.7	50.0	150	
DDT, 2,4'-	789-02-6	E660F	0.004	μg/L	0.2 μg/L	110	50.0	150	
DDT, 4,4'-	50-29-3	E660F	0.004	μg/L	0.2 μg/L	112	50.0	150	
Dieldrin	60-57-1	E660F	0.008	μg/L	0.2 μg/L	104	50.0	150	
Endosulfan, alpha-	959-98-8	E660F	0.007	μg/L	0.2 μg/L	124	50.0	150	
Endosulfan, beta-	33213-65-9	E660F	0.007	μg/L	0.2 μg/L	115	50.0	150	
Endrin	72-20-8	E660F	0.01	μg/L	0.2 μg/L	94.8	50.0	150	
Heptachlor	76-44-8	E660F	0.008	μg/L	0.2 μg/L	104	50.0	150	
Heptachlor epoxide	1024-57-3	E660F	0.008	μg/L	0.2 μg/L	101	50.0	150	
Hexachlorobenzene	118-74-1	E660F	0.008	μg/L	0.2 μg/L	97.1	50.0	150	
Hexachlorobutadiene	87-68-3	E660F	0.008	μg/L	0.2 μg/L	93.4	50.0	150	
Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.008	μg/L	0.2 μg/L	110	50.0	150	
Hexachloroethane	67-72-1	E660F	0.008	μg/L	0.2 μg/L	93.5	50.0	150	
Methoxychlor	72-43-5	E660F	0.008	μg/L	0.2 μg/L	114	50.0	150	

Page : 13 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							-	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
ssolved Metals	(QCLot: 1280870)									
VT2340821-003	Anonymous	Antimony, dissolved	7440-36-0	E421	0.0521 mg/L	0.05 mg/L	104	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	0.0559 mg/L	0.05 mg/L	112	70.0	130	
		Barium, dissolved	7440-39-3	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Beryllium, dissolved	7440-41-7	E421	0.00500 mg/L	0.005 mg/L	100	70.0	130	
		Boron, dissolved	7440-42-8	E421	0.047 mg/L	0.05 mg/L	93.9	70.0	130	
		Cadmium, dissolved	7440-43-9	E421	0.00512 mg/L	0.005 mg/L	102	70.0	130	
		Chromium, dissolved	7440-47-3	E421	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		Cobalt, dissolved	7440-48-4	E421	0.0125 mg/L	0.0125 mg/L	99.9	70.0	130	
		Copper, dissolved	7440-50-8	E421	0.0119 mg/L	0.0125 mg/L	95.5	70.0	130	
		Lead, dissolved	7439-92-1	E421	0.0242 mg/L	0.025 mg/L	96.6	70.0	130	
		Molybdenum, dissolved	7439-98-7	E421	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		Nickel, dissolved	7440-02-0	E421	0.0242 mg/L	0.025 mg/L	96.7	70.0	130	
		Selenium, dissolved	7782-49-2	E421	0.0571 mg/L	0.05 mg/L	114	70.0	130	
		Silver, dissolved	7440-22-4	E421	0.00349 mg/L	0.005 mg/L	69.8	70.0	130	MES
		Sodium, dissolved	7440-23-5	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		Thallium, dissolved	7440-28-0	E421	0.0488 mg/L	0.05 mg/L	97.6	70.0	130	
		Uranium, dissolved	7440-61-1	E421	ND mg/L	0.00025 mg/L	ND	70.0	130	
		Vanadium, dissolved	7440-62-2	E421	0.0271 mg/L	0.025 mg/L	108	70.0	130	
		Zinc, dissolved	7440-66-6	E421	0.0251 mg/L	0.025 mg/L	100	70.0	130	
latile Organic	Compounds (QCLo	t: 1280680)								
/T2340901-001	23-1	Acetone	67-64-1	E611D	126 µg/L	100 μg/L	126	60.0	140	
		Benzene	71-43-2	E611D	95.5 μg/L	100 μg/L	95.5	60.0	140	
		Bromodichloromethane	75-27-4	E611D	108 μg/L	100 μg/L	108	60.0	140	
		Bromoform	75-25-2	E611D	107 μg/L	100 μg/L	107	60.0	140	
		Bromomethane	74-83-9	E611D	97.1 μg/L	100 μg/L	97.1	60.0	140	
		Carbon tetrachloride	56-23-5	E611D	99.4 μg/L	100 μg/L	99.4	60.0	140	
		Chlorobenzene	108-90-7	E611D	92.0 μg/L	100 μg/L	92.0	60.0	140	
		Chloroform	67-66-3	E611D	103 μg/L	100 μg/L	103	60.0	140	
		Dibromochloromethane	124-48-1	E611D	111 µg/L	100 μg/L	111	60.0	140	
		Dibromoethane, 1,2-	106-93-4	E611D	104 μg/L	100 μg/L	104	60.0	140	
	I	Dichlorobenzene, 1,2-	95-50-1	E611D	94.8 μg/L	100 μg/L	94.8	60.0	140	

Page : 14 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Project : 1904320

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Compounds (QCLo	t: 1280680) - continued								
WT2340901-001	23-1	Dichlorobenzene, 1,3-	541-73-1	E611D	90.8 μg/L	100 μg/L	90.8	60.0	140	
		Dichlorobenzene, 1,4-	106-46-7	E611D	90.9 μg/L	100 μg/L	90.9	60.0	140	
		Dichlorodifluoromethane	75-71-8	E611D	68.0 µg/L	100 μg/L	68.0	60.0	140	
		Dichloroethane, 1,1-	75-34-3	E611D	105 μg/L	100 μg/L	105	60.0	140	
		Dichloroethane, 1,2-	107-06-2	E611D	108 μg/L	100 μg/L	108	60.0	140	
		Dichloroethylene, 1,1-	75-35-4	E611D	89.7 µg/L	100 μg/L	89.7	60.0	140	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	98.1 µg/L	100 μg/L	98.1	60.0	140	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	90.9 μg/L	100 μg/L	90.9	60.0	140	
		Dichloromethane	75-09-2	E611D	111 µg/L	100 μg/L	111	60.0	140	
		Dichloropropane, 1,2-	78-87-5	E611D	96.9 µg/L	100 μg/L	96.9	60.0	140	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	84.7 µg/L	100 μg/L	84.7	60.0	140	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	79.7 μg/L	100 μg/L	79.7	60.0	140	
		Ethylbenzene	100-41-4	E611D	85.4 µg/L	100 μg/L	85.4	60.0	140	
		Hexane, n-	110-54-3	E611D	98.9 µg/L	100 μg/L	98.9	60.0	140	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	113 µg/L	100 μg/L	113	60.0	140	
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	90 μg/L	100 μg/L	90.3	60.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	92.8 µg/L	100 μg/L	92.8	60.0	140	
		Styrene	100-42-5	E611D	90.4 μg/L	100 μg/L	90.4	60.0	140	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	102 μg/L	100 μg/L	102	60.0	140	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	108 μg/L	100 μg/L	108	60.0	140	
		Toluene	108-88-3	E611D	99.6 μg/L	100 μg/L	99.6	60.0	140	
		Trichloroethane, 1,1,1-	71-55-6	E611D	90.9 μg/L	100 μg/L	90.9	60.0	140	
		Trichloroethane, 1,1,2-	79-00-5	E611D	104 μg/L	100 μg/L	104	60.0	140	
		Trichloroethylene	79-01-6	E611D	113 µg/L	100 μg/L	113	60.0	140	
		Trichlorofluoromethane	75-69-4	E611D	90.2 μg/L	100 μg/L	90.2	60.0	140	
		Vinyl chloride	75-01-4	E611D	83.7 µg/L	100 μg/L	83.7	60.0	140	
		Xylene, m+p-	179601-23-1	E611D	175 µg/L	200 μg/L	87.5	60.0	140	
		Xylene, o-	95-47-6	E611D	88.0 μg/L	100 μg/L	88.0	60.0	140	
ydrocarbons (C	QCLot: 1280681)									
NT2340901-001	23-1	F1 (C6-C10)		E581.F1-L	1820 μg/L	2000 μg/L	90.8	60.0	140	

Qualifiers

Qualifier Description

MES

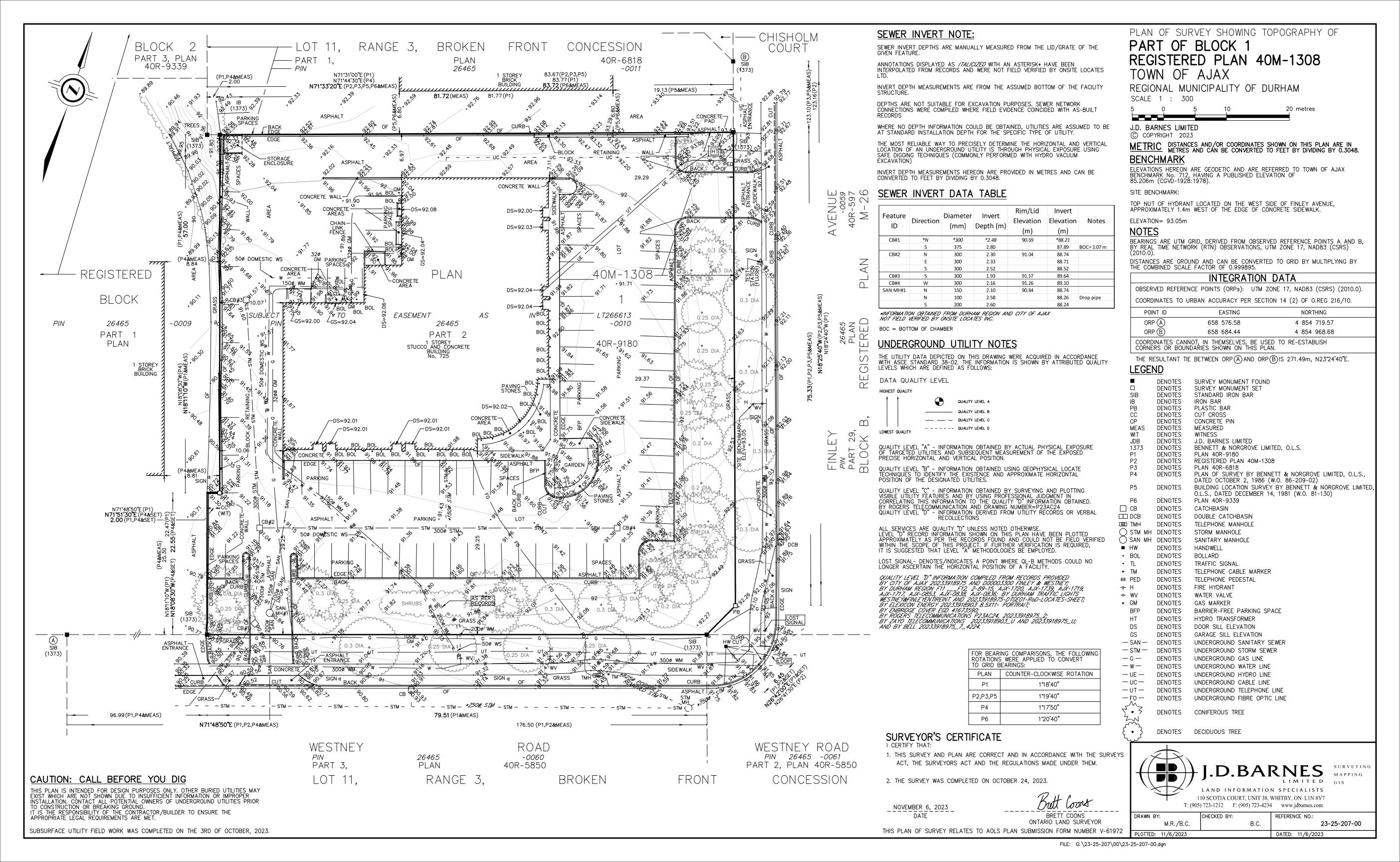
Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 15 of 15 Work Order : WT2340901

Client : Palmer Environmental Consulting Group Inc.

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 -


Canada Toll Free: 1 800 668 9878

of

25-3
Sample Identification and/or Coordinates (This description will appear on the report)
(dd-mmn-yy)
0128
Sample Type NUMB
5 0

Appendix A – General A4 – Survey of Phase Two Property

